Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T01:37:10.354Z Has data issue: false hasContentIssue false

First-Principles Interatomic Potentials for Transition Metals and Their Surfaces

Published online by Cambridge University Press:  16 February 2011

John A. Moriarty
Affiliation:
Lawrence Livermore National Laboratory, University of California, Livermore, CA 94550
Robert B. Phillips
Affiliation:
Sandia National Laboratories, Livermore, CA 94550
Get access

Abstract

For bulk transition metals, a first-principles generalized pseudopotential theory (GPT) of interatomic potentials has been developed in which the cohesive-energy unctional takes the form of a volume term plus sums over widely transferable two-, three-, and four-ion potentials. The GPT has been further extended to surfaces by making an internal transformation of this functional to an embedded-atom-like format in which the embedding function is identified as the bulk volume term and the atomic volume is replaced by an average electron density. Applications of the bulk and surface GPT to the calculation of structural, vacancy-formation, and surface energies in Cu and Mo, and to the investigation of surface relaxation and reconstruction in Mo are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Moriarty, J. A., Phys. Rev. B 38, 3199 (1988).Google Scholar
2. Moriarty, J. A., Phys. Rev. B 5, 2066 (1972).Google Scholar
3. Moriarty, J. A., Phys. Rev. B 16, 2537 (1977) and B 26, 1754 (1982).Google Scholar
4. Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965); L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064 (1971).Google Scholar
5. Hafner, J., From Hamiltonians to Phase Diagrams (Springer, Berlin, 1987).Google Scholar
6. Moriarty, J. A., Phys. Rev. B (in press).Google Scholar
7. Daw, M. S. and Baskes, M. I., Phys. Rev. B 29, 6433 (1984).Google Scholar
8. Foiles, S. M., Baskes, M. I., and Daw, M. S., Phys. Rev. B 33, 7983 (1986).Google Scholar
9. Moriarty, J. A. (to be published).Google Scholar
10. Moriarty, J. A., Phys. Rev. Lett. 55, 1502 (1985).Google Scholar
11. Kaufman, L. and Bernstein, H., Computer Calculation of Phase Diagrams (Academic, New York, 1970).Google Scholar
12. Miedema, A. R. and Niessen, A. K., CALPHAD 7, 27 (1983).Google Scholar
13. Skriver, H. L., Phys. Rev. B 31, 1909 (1985).Google Scholar
14. Hixson, R. S., Boness, D. A., Shaner, J. W., and Moriarty, J. A., Phys. Rev. Lett. 62, 637 (1989).Google Scholar
15. Vohra, Y. K. and Ruoff, A. L. (to be published); Vohra, Y. K. (private communication).Google Scholar
16. Moriarty, J. A., in Many-Atom Interactions in Solids, edited by Nieminen, R., Puska, M. J., and Manninen, M. (Springer, Berlin, in press).Google Scholar
17. Bell, P. M., Xu, J. A., and Mao, H. K., in Shock Waves in Condensed Matter, edited by Gupta, Y. M. (Plenum, New York, 1986), p. 125.Google Scholar
18. Balluffi, R. W., J. Nucl. Mater 69&70, 240 (1978).Google Scholar
19. Tyson, W. R. and Miller, W. A., Surf. Sci. 62, 267 (1977).Google Scholar
20. Miedema, A. R., Z. Metallk. 69, 287 (1978).Google Scholar
21. Maier, K., Peo, M., Saile, B., Schaefer, H. E., and Seeger, A., Philos. Mag. A 40, 701 (1979).Google Scholar
22. Schwirtlich, I. A. and Schultz, H., Philos. Mag. A 41, 91 (1980).Google Scholar
23. Ziegler, R. and Schaefer, H. E., in Vacancies and Interstitials in Metals and Alloys, edited by Abromeit, C. and Wollenberger, H. (Trans Tech, Switzerland, 1987), p. 145.Google Scholar
24. Felter, T. E., Barker, R. A., and Estrup, P. J., Phys. Rev. Lett. 38, 1138 (1977).Google Scholar
25. de la Garza, L. Morales and Clarke, L. J., J. Phys. C 14, 5391 (1981).Google Scholar
26. Legrand, B., Trdglia, G., Desjonqu~res, M. C., and Spanjaard, D., J. Phys. C 19, 4463 (1986).Google Scholar