Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T19:14:08.209Z Has data issue: false hasContentIssue false

First Principles Calculations of Complex Intermediate Band Materials for Photovoltaic Devices

Published online by Cambridge University Press:  31 January 2011

Perla Wahnón
Affiliation:
[email protected], Universidad Politecnica de Madrid, Instituto de Energia Solar & Dept. Tecnologias Especiales, Madrid, Spain
Irene Aguilera
Affiliation:
[email protected], Universidad Politecnica de Madrid, Instituto de Energia Solar & Dept. Tecnologias Especiales, Madrid, Madrid, Spain
Pablo Palacios
Affiliation:
[email protected], Universidad Politecnica de Madrid, Instituto de Energia Solar & Dept. Tecnologias Especiales, Madrid, Madrid, Spain
Kefren Sánchez
Affiliation:
[email protected], Universidad Politecnica de Madrid, Instituto de Energia Solar & Dept. Tecnologias Especiales, Madrid, Madrid, Spain
Get access

Abstract

An ab initio study of several compounds candidates to behave as intermediate band materials is presented. The use of these materials as the active element in solar cells is a promising way to enhance the photovoltaic efficiency. Indeed from this point of view, most interesting compounds are those whose host semiconductor presents a band-gap close to the optimum value of 2 eV. Chalcogenide compounds substituted by light transition metals are solid candidates to this end. While they are being further characterized and experimentally synthesized, another approach is being examined. It consists of using Si as host semiconductor. Ti implantation at concentrations several orders of magnitude above equilibrium solubility has shown a probable intermediate band material behavior, the origin of the intermediate band being related to levels of interstitial Ti. Optoelectronic characterization of this material is completed. A novel possibility consists of combining chalcogen S implantation with boron. In this case preliminary results of electronic structure are shown.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Luque, A., Martí, A., Phys. Rev. Lett. 78, 5014 (1997).Google Scholar
2 Wahnón, P., Tablero, C. Phys. Rev. B 65, 165115 (2002).Google Scholar
3 Palacios, P. Fernández, J. J., Sánchez, K., Conesa, J. C. and Wahnón, P., Phys. Rev. B 73, 085206 (2006).Google Scholar
4 Palacios, P. Sánchez, K., Conesa, J. C. Wahnón, P., Phys. Stat. Solidi (a) 203, 1395 (2006).Google Scholar
5 Palacios, P. Sánchez, K., Conesa, J. C. Fernández, J. J., Wahnón, P., Thin Solid Films 515, 6280 (2007).Google Scholar
6 Lucena, R. Aguilera, I. Palacios, P. Wahnón, P., Conesa, J. C. Chem. Maters. 20, 512 (2008).Google Scholar
7 Palacios, P. Aguilera, I. Sánchez, K., Conesa, J. C. Wahnón, P., Phys. Rev. Lett. 101, 046403 (2008).Google Scholar
8 Olea, J. Toledano-Luque, M., Pastor, D. González-Díaz, G., Mártil, I., J. Appl. Phys. 104, 016105 (2008).Google Scholar
9 Sánchez, K., Aguilera, I. Palacios, P. Wahnón, P., Phys. Rev. B 79, 165203 (2009).Google Scholar
10 Olea, J. González-Díaz, G., Pastor, D. Mártil, I., J. of Phys D: Appl. Phys. 42, 085110 (2009).Google Scholar
11 Hohenberg, P. Kohn, W. Phys. Rev. 136, B864 (1964).Google Scholar
12 Kohn, W. Sham, L. J. Phys. Rev. 140, A1133 (1965).Google Scholar
13 Kresse, G. Hafner, J. Phys. Rev. B 47, 558 (1993).Google Scholar
14 Kresse, G. Furthmüller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
15 Perdew, J. P. Chevary, J. A. Vosko, S. H. Jackson, K. A. Pederson, M. R. Singh, D. J. Fiolhais, C., Phys. Rev. B 46, 6671 (1992).Google Scholar
16 Kresse, G. Joubert, D. Phys. Rev. B 59, 1758 (1999).Google Scholar
17 Gajdos, M. Hummer, K. Kresse, G. Furthmüller, J., and Bechstedt, F. Phys. Rev. B 73, 045112 (2006).Google Scholar
18 Furthmüller, J., computer code OPTICS, http://www.freeware.vasp.de/VASP/optics/ (At the date this paper was written, URL referenced code and information. Neither the authors nor the MRS warrants or assumes liability for the content or availability of URL referenced).Google Scholar
19 Overhof, H. Scheffler, M. Weinert, C.M. Phys. Rev. B 91, 12494 (1991).Google Scholar
20 Tabbal, M. Kim, T. Warrender, J. M. Aziz, M.J. Cardozo, B.L. Goldman, R.S. J. Vac. Sci. Technol. B 25, 1847 (2007).Google Scholar
21 Olesinski, R.W. and Abbaschian, G.J. Bull. Alloy Phase Diagrams 5, 478 (1984).Google Scholar