Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T15:08:40.069Z Has data issue: false hasContentIssue false

First Principles Calculations for Lithiated Manganese Oxides

Published online by Cambridge University Press:  10 February 2011

R. Prasad
Affiliation:
Chemical Technology Division, Argonne National Laboratory
R. Benedek
Affiliation:
Chemical Technology Division, Argonne National Laboratory
M. M. Thackeray
Affiliation:
Chemical Technology Division, Argonne National Laboratory
J. M. Wills
Affiliation:
Theoretical Division, Los Alamos National Laboratury, Los Alamos, New Mexico
L. H. Yang
Affiliation:
Condensed-Matter Physics Division, Lawrence Livermore National Laboratory
Get access

Abstract

First principles calculations within the local-spin-density-functional theory (LSDFT) framework are presented of densities of electronic states for MnO, LiMnO2 in the monoclinic and orthorhombic structures, cubic LiMn204 spinel and λ-MnO2 (delithiated spinel), all in antiferromagnetic spin configurations. The changes in energy spectra as the Mn oxidation state varies between 2+ and 4+ are illustrated. Preliminary calculations for Co-doped LiMnO2 are presented, and the destabilization of a monoclinic relative to a rhombohedral structure is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ven, A. Van der, Aydinol, M. K., Ceder, G., Kresse, G., and Hafner, J., Phys. Rev. B 58, 2975 (1998).Google Scholar
2. Wolverton, C. and Zunger, A., Phys. Rev. Lett. 81, 606 (1998).Google Scholar
3. Benedek, R., Thackeray, M. M., and Yang, L. H., Phys. Rev. B 56, 10708 (1997); Materials Research Society Symposium Proceedings Vol. 496, 115 (1998).Google Scholar
4. Singh, D. J., Phys. Rev. B 55, 309 (1997).Google Scholar
5. Mishra, S. K. and Ceder, G., preprint, 1998.Google Scholar
6. Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., and Fiolhais, C., Phys. Rev. B 46, 6671 (1992)Google Scholar
7. Armstrong, A. R., Gitzendanner, R., Robertson, A. D., and Bruce, P. G., Chem. Commun. 17, 1833 (1998).Google Scholar
8. Wills, J. M., unpublished.Google Scholar
9. Greedan, J. E., Raju, N. P. and Davidson, I. J., J. Solid State Chem. 128, 209 (1997).Google Scholar
10. Armstrong, R. and Bruce, P. G., Nature 381, 499 (1996); F. Capitaine, P. Gravereau, and C. Delmas, Solid State Ionics 89, 197 (1996).Google Scholar
11. Greedan, J. E., Raju, N. P., Wills, A. S., Morin, C., Britten, J., Dabkowska, H., and Shaw, S. M., Chem. Mater. 10, 3058 (1998).Google Scholar
12. Wills, A. S., Raju, N. P., and Greedan, J. E., preprint 1998.Google Scholar
13. Yamada, A. and Tanaka, M., Materials Research Bulletin, 30, 715 (1995).Google Scholar
14. Rodriguez-Carvajal, J., Rousse, G., Masquelier, C., and Hervieu, M., Phys. Rev. Lett., in press (1998).Google Scholar
15. Mackrodt, W. C., and Williamson, E.A., Phil. Mag. B 77, 1077 (1998).Google Scholar
16. Lad, R. and Henrich, V. E., Phys. Rev. B 38, 10860 (1988).Google Scholar
17. Thackeray, M. M., Progress in Solid State Chem. 25, 1 (1997).Google Scholar
18. Ellemans, B. A. A., Laar, B. van, Veer, K. R. van der, and Loopstra, B. O., J. Solid State Chem. 3, 328 (1971).Google Scholar
19. Park, J.-H., Cheong, S.-W., and Chen, C. T., Phys. Rev. B 55, 11072 (1997).Google Scholar
20. Aydinol, M. K., Kohan, A. F., Ceder, G., Cho, K. and Joannopoulos, J., Phys. Rev. B 56, 1354 (1997).Google Scholar