Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T10:26:25.642Z Has data issue: false hasContentIssue false

The First Molecular Wheel: A Theoretical Investigation

Published online by Cambridge University Press:  14 January 2011

Gustavo Brunetto
Affiliation:
Applied Physics Department, State University of Campinas, 13083-859, Campinas, São Paulo, Brazil.
Fernando Sato
Affiliation:
Physics Department, Federal University of Juiz de Fora, Juiz de Fora, 36036-330, Minas Gerais, Brazil.
Xavier Bouju
Affiliation:
Nanosciences Group, Centre d’élaboration de materiaux et d’études structurales, CEMES-CNRS, PO Box 94347, F-31055 Toulouse Cedex 4, France.
Douglas S. Galvao
Affiliation:
Applied Physics Department, State University of Campinas, 13083-859, Campinas, São Paulo, Brazil.
Get access

Abstract

Recently, the first molecular nanowheel was synthesized and characterized from Scanning Tunneling Microscope (STM) experiments. It was demonstrated that a specifically designed hydrocarbon molecule (C44H24) could roll on a copper substrate along the [110] surface direction. In this work we report a preliminary theoretical analysis of the isolated molecule and of its rolling processes on different Cu surfaces. We have used ab initio and classical molecular dynamics methods. The simulations showed that the rolling mechanism is only possible for the [110] surface. In this case, the spatial separation among rows of copper atoms is enough to ‘trap’ the molecule and to create the necessary torque to roll it. Other surface orientations ([111] and [100]) are too smooth and cannot provide the necessary torque for the rolling process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Grill, L., Rieder, K.-H., Moresco, F., Rapenne, G., Stojkovic, S., Bouju, X. and Joachim, C., Nature Nanotechnology 2, 95 (2007).Google Scholar
[2] Rappé, A. K., Casewit, C. J., Colwell, K.S., Goddard, W. A. III, Skiff, W. M., J. Am. Chem. Soc. 114, 10024 (1992).Google Scholar
[3] Materials Studio 4.2-A package for modeling and simulation for studying chemicals and materials. http://www.accelrys.com.Google Scholar
[4] Otero, R., Hummelink, F., Sato, F., Legoas, S. B., Thostrup, P., Laegsgaard, E., Stensgaard, I., Galvão, D. S., and Besenbacher, F., Nature Materials 3, 779 (2004).Google Scholar
[5] Orca - An ab initio, DFT and semiempirical SCF-MO package is avaiable from Frank Neese home page. http://www.thch.uni-bonn.de/tc/orca.Google Scholar
[6] Shirai, Y., Morin, J.-F., Sasaki, T., Guerrero, J. M. and Tour, J. M., Chem. Soc. Rev. 35, 1043 (2006).Google Scholar
[7] Schunack, M., Rosei, F. and Naitoh, Y., J. Chem. Phys. 117, 6259 (2002).Google Scholar
[8] Gimzewski, J. K., Joachim, C., Schlittler, R. R., Langlais, V., Tang, H. and Johannsen, I., Science 281, 531 (1998).Google Scholar
[9] Chiaravalloti, F., Gross, L., Rieder, K.-H., Stojkovic, S.M., Gourdon, A., Joachim, C. and Moresco, F., Nature Mater. 6, 30 (2007).Google Scholar
[10] Zambelli, T., Goudeau, S., Lagoute, J., Gourdon, A., Bouju, X. and Gauthier, S., ChemPhysChem 7, 1917 (2006).Google Scholar
[11] Anderson, A. B., Int. J. Quantum Chem. 49, 581 (1994).Google Scholar
[12] Ample, F., Joachim, C., Surf. Sci. 600, 3243 (2006).Google Scholar
[13] Bouju, X., Joachim, C., Girard, C., Tang, H., Phys. Rev. B 63, 085415 (2001).Google Scholar
[14] Villagomez, C. J., Sasaki, T., Tour, J. M., Grill, L., J. Am. Chem. Soc., in press (2011).Google Scholar
[15] Bartels, L., Meyer, G., and Rieder, K.-H., Phys. Rev. Lett. 79, 697 (1997).Google Scholar
[16] Bouju, X., unpublished.Google Scholar