Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T15:24:26.374Z Has data issue: false hasContentIssue false

Film Thickness Effects on Interfacial Fracture of Epoxy Bonds

Published online by Cambridge University Press:  17 March 2011

N. R. Moody
Affiliation:
Sandia National Laboratories, Livermore CA 94550
D. F. Bahr
Affiliation:
Washington State University, Pullman, WA 99164
M. S. Kent
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
J. A. Emerson
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
E. D. Reedy Jr
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

Nanoindentation test techniques were combined with deposition of highly stressed overlayers to study the interfacial fracture susceptibility of spin coated Epon 828/T403 on aluminized glass substrates as a function of film thickness. The test techniques required to induce fracture differed between samples. Nevertheless, the resulting interfacial fracture energies decreased monotonically with film thickness to a value near 0.5 J/m2. This value is higher than the ‘true work of adhesion' for uncured epoxy oliogomers on a methyl-terminated aluminum surface. However, it may indicate that we have irreversible specific interactions such as hydrogen bonding. Then 0.5 J/m2 may be near the fundamental value for such an interaction, or the ‘practical work of adhesion’.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kent, M. S., Reedy, E. D., and Stevens, M. J., Molecular-to-Continuum Fracture Analysis of Thermosetting Polymer/Solid Interfaces, Sandia Report SAND2000-0026 (2000).Google Scholar
2. , Wei and Hutchinson, J. W., Int'l. Journal of Fracture, 9, 315 (1998).Google Scholar
3. Bagchi, A. and Evans, A. G., Thin Solid Films, 286, 203 (1996).Google Scholar
4. Bagchi, A., Lucas, G. E., Suo, Z., and Evans, A. G., J. Mater. Res., 9, 1734 (1994).Google Scholar
5. Kriese, M. D., Gerberich, W. W., and Moody, N. R., J. Mater. Res., 14, 3007 (1999).Google Scholar
6. Kriese, M. D., Moody, N. R., and Gerberich, W. W., Acta mater., 46, 6623 (1998).Google Scholar
7. Zhuk, A. V., Evans, A. G., Hutchinson, J. W., and Whitesides, G. M., J. Mater. Res., 13, 3555 (1998).Google Scholar
8. Marsh, D. M., Proc. Roy. Soc. A, 279, 420 (1963).Google Scholar
9. Moody, N. R., Bahr, D. F., Kent, M. S., Emerson, J. A., Reedy, E. D. Jr, in Fundamentals of Nanoindentation and Nanotribology II, edited by Cook, R. F., Baker, S. P., Corcoran, S.G., and Moody, N. R., (Mater. Res. Soc. Proc., 649, Pittsburgh, PA, 2001) pp. Q6.3.16.Google Scholar
10. Swadener, J. G., Liechti, K. M., and Lozanne, A. L. de, J. Mech. Phys. Solids, 47, 223 (1999).Google Scholar
11. Agrawal, R. K. and Drzal, L. T., J. Adhesion, 54, (1995) p. 79102.Google Scholar
12. Agrawal, R. K. and Drzal, L. T., J. Adhesion Sci. Tech., 9, 1381 (1995).Google Scholar
13. Hutchinson, J. W. and Suo, Z., in Advances in Applied Mechanics, edited by Hutchinson, J. W. and T. Y.Google Scholar
14. Marshall, D. B. and Evans, A. G., J. Appl. Phys., 56, 2632 (1984).Google Scholar
15. Evans, A. G. and Hutchinson, J. W., Int. J. Solids Struct., 20, 455 (1984).Google Scholar
16. Strojny, A., Moody, N. R., Emerson, J. A., W. W. in Polymer Systems, Anastasiadis, S. H., Karim, A., Ferguson, G. S., eds., (Mater. Res. Soc. Proc, 629, Pittsburgh, PA, 2000) p. F5.13.16.Google Scholar
17. Thouless, M. D., Acta Metall., 36, 3131 (1988).Google Scholar
18. Ritter, J. E., Lardner, T. J., Rosenfeld, L., and Lin, M. R., J. Appl. Phys., 66, 3626 (1989).Google Scholar
19. Rosenfeld, L. G., Ritter, J. E., Lardner, T. J., and Lin, M. R., J. Appl. Phys., 67, 3291 (1990).Google Scholar
20. Suo, Z. and Hutchinson, J. W., Mater. Sci. Engng., A107, 135 (1989).Google Scholar