Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T10:38:00.806Z Has data issue: false hasContentIssue false

Field Enhancement Mechanisms and Electron Field Emission Properties of Ion Beam Synthesized and Modified SiC/Si Heterostructures

Published online by Cambridge University Press:  11 February 2011

W. M. Tsang
Affiliation:
Dept. of Electronic Engineering and Materials Science and Technology Research Centre, The Chinese University of Hong Kong, Hong Kong, China
S. P. Wong
Affiliation:
Dept. of Electronic Engineering and Materials Science and Technology Research Centre, The Chinese University of Hong Kong, Hong Kong, China
J. K. N. Lindner
Affiliation:
Universität Augsburg, Institut für Physik, D-86135 Augsburg, Germany
Get access

Abstract

SiC/Si heterostructures were synthesized by high dose carbon implantation into silicon using a metal vapor vacuum arc ion source. Their electron field emission properties were studied and correlated with results from other characterization techniques including atomic force microscopy (AFM), conducting AFM, Fourier transform infrared absorption spectroscopy, x-ray diffraction and photoelectron spectroscopy. It is clearly demonstrated that there are two types of field enhancement mechanisms responsible for the improvement of the electron field emission properties of these ion beam synthesized SiC/Si heterostructures, namely, the surface morphology effect and the local electrical inhomogeneity effect. The dependence of the FE properties on the carbon implant dose and thermal annealing conditions could be understood in terms of these two field enhancement mechanisms. It is also demonstrated that improvement in the FE properties can be achieved by implanting tungsten ions into these SiC/Si heterostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Geis, M., Twichell, J.C., Macaulay, J., and Okano, K., Appl. Phys. Lett. 67, 1328 (1995).Google Scholar
2. Sowers, A.T., Ward, B.L., English, S.L., and Nemanich, R.J., J. Appl. Phys. 86, 3973 (1999).Google Scholar
3. Ding, X.-Z., Li, Y. J., Sun, Z., Tay, B. K., Lau, S. P., Chen, G. Y., Cheung, W. Y., Wong, S. P., J. Appl. Phys. 88, 6842 (2000).Google Scholar
4. Carey, J.D., Forrest, R.D., Khan, R.U.A., Silva, S.R.P., Appl. Phys. Lett. 77, 2006 (2000).Google Scholar
5. Carey, J.D., Forrest, O.R.D., and Silva, S.R.P., Appl. Phys. Lett. 78, 2339 (2001).Google Scholar
6. Ilie, A., Ferrari, A.C., Yagi, T., Robertson, J., Appl. Phys. Lett. 76, 2627 (2000).Google Scholar
7. Milne, W.I., Ilie, A., Cui, J.B., Ferrari, A., Robertson, J., Diam. & Rel. Mater. 10, 260 (2001).Google Scholar
8. Robertson, J., Mater. Sci. & Eng. R271, 1 (2002).Google Scholar
9. Li, Y.J., Sun, Z., Lau, S.P., Chen, G.Y. and Tay, B.K., Appl. Phys. Lett. 79, 1670 (2001).Google Scholar
10. Chen, Y., Shaw, D.T. and Guo, L., Appl. Phys. Lett. 76, 2469 (2000).Google Scholar
11. Chen, Dihu, Wong, S.P., Cheung, W.Y., Wu, W., Luo, E.Z., Xu, J.B., and Wilson, I.H., Appl. Phys. Lett. 72, 1926 (1998).Google Scholar
12. Chen, Dihu, Cheung, W.Y., Wong, S.P., Fung, Y.M., Xu, J.B., Wilson, I.H., Kwok, R.W.M., J. Vac. Sci. Technol. A17, 2109 (1999).Google Scholar
13. Wong, S.P., Chen, Dihu, Ho, L.C., Yan, H., Kwok, R.W.M., Nucl. Instr. and Meth. B140, 70 (1998).Google Scholar
14. Chen, Dihu, Cheung, W.Y., Wong, S.P., Nucl. Instr. and Meth. B148, 589 (1999).Google Scholar
15. Tsang, W.M., M. Phil. Thesis, Chinese University of Hong Kong (2002).Google Scholar
16. Carbide, Nitride and Boride Material – Synthesis and Processing, edited by Weimer, A. W., Chapman & Hall, London.Google Scholar
17. Jacob, C., Nishino, S., Mehregany, M., Powell, J.A., Pirouz, P., Inst. Phys. Conf. Ser. (UK) no 137 (1994) ch.3 p.247–50.Google Scholar