Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T15:44:41.307Z Has data issue: false hasContentIssue false

Field emission from heterostructured nanoseeded diamond and nanocluster carbon cathodes

Published online by Cambridge University Press:  14 March 2011

B.S. Satyanarayana
Affiliation:
Electronic Devices & Materials Group, Engineering Dept, University of Cambridge, Cambridge, UK
K. Nishimura
Affiliation:
KUT Academic & Industrial Collaboration Centre, Kochi University of Technology, Kochi, 782-8502, Japan
A. Hiraki
Affiliation:
Kochi Prefectural Industrial Tech. Center, 3992-3, Nunoshida, Kochi, 781-5101, Japan
W.I. Milne
Affiliation:
Electronic Devices & Materials Group, Engineering Dept, University of Cambridge, Cambridge, UK
Get access

Abstract

Novel heterostructured cold cathodes made of nanoseeded diamond and cathodic arc process grown nanocluster carbon films, were studied. The nanocrystalline diamond with varying diamond concentration was first coated on to the substrate. The nanocluster carbon films were then deposited on the nanoseeded diamond coated substrates using the cathodic arc process at room temperature. The resultant heterostructured microcathodes were observed to exhibit electron emission currents of 1μA/cm2 at low fields of 1.2 - 5 V/μm. Further some of the samples seem to exhibit I-V characteristics with a negative differential resistance region at room temperature conditions. This negative differential resistance or the resonant tunneling behaviour was observed to be dependent on the nanoseeded diamond concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhu, W., Kochanski, G P & Jin, S, Science, 282, 1471, (1998).Google Scholar
2. Gruen, M.Q. D. M., Krauss, A. R., Auciello, O., Corrigan, T. D. and Chang, R. P. H., J Vac Sci Technol B 17, 705 (1999).Google Scholar
3. Satyanarayana, B.S., Peng, X.L., Adamopoulos, G., Robertson, J., Milne, W.I., & Clyne, T.W. to be published in MRS Symp Proc. Vol 621, 2000,Google Scholar
4. Heer, W.A. de, Chatelain, A., and Ugrate, D., Science 270, 1179 (1995).Google Scholar
5. Chen, Y., Patel, S., Ye, Y., Shaw, D.T. & Guo, L., App. Phys. Lett, 73, 2119 (1998).Google Scholar
6. Coll, B.F., Jaskie, J.E., Markham, J.L., Menu, E.P., Talin, A.A., Allmen, P. von, MRS. Sym Proc. Vol 498, 185 (1998).Google Scholar
7. Satyanarayana, B S, Robertson, J, Milne, W I, J. App. Phys. 87, 3126, (2000)Google Scholar
8. Obraztsov, O.N., Pavlovsky, I.Yu. and Volkov, A.P., J. Vac. Sci. Technol. B 17, 674, (1999).Google Scholar
9. Ferrari, A.C., Satyanarayana, B.S., Milani, P., Barborini, E., Piseri, P., Robertson, J. and Milne, W.I.. Europhys. Lett, 46, 245 (1999)Google Scholar
10. Makita, H., Nishimura, K., Jiang, N., Hatta, A., Ito, T. and Hiraki, A., Thin solid films, 281–282, 279, (1996).Google Scholar
11. Zhirnov, V.V., Kuttel, O.M., Groning, O., Alimova, A.N., Detkov, P.Y., Belbrov, P.I., Schaller, E. Maillard- and Schlapbach, L., J. Vac. Sci. Technol. B 17, 666, (1999).Google Scholar
12. Satyanarayana, B S, Hart, A, Milne, W I & Robertson, J, App Phys Lett 71, 1430 (1997).Google Scholar
13. Gruen, D.M., Annu.Rev.Mater.Sci, 29, 211, (1999).Google Scholar
14. Talin, A A, Pan, L S, McCarty, K F, Doerr, H J, Bunshah, R F, Appl Phys Lett 69, 3842 (1996).Google Scholar
15. Obraztsov, O.N., Pavlovsky, I.Yu., Volkov, A.P., Petrov, V.I., Rakova, E.V., Roddatis, V.V. & Nagovitsyn, S.P., in Recent Progress in Diamond Electronics – 1998, ed., Ito, T., 169, (1998).Google Scholar