Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T23:11:03.714Z Has data issue: false hasContentIssue false

Field Effect Transistors of BTQBT and its Derivatives

Published online by Cambridge University Press:  01 February 2011

Masaki Takada
Affiliation:
Department of Functional Molecular Science, The Graduate University for Advanced Studies, 38 Myodaiji, Okazaki, 444-8585, Japan
Yoshiro Yamashita
Affiliation:
Department of Electronic Science and Technology, Tokyo Institute of Technology, Nagata-cho, Midori-ku, Yokohama, 226-8502, Japan
Hirokazu Tada
Affiliation:
Institute for Molecular Science, 38 Myodaiji, Okazaki, 444-8585, Japan
Get access

Abstract

We have prepared and characterized thin film field effect transistors (FETs) of bis-(1, 2, 5-thiadiazolo)-p-quinobis(1, 3-dithiole) (BTQBT) and its derivatives. Preparation and characterization of the films were carried out under ultrahigh vacuum condition. Most materials examined showed p-type semiconducting behaviors. Among p-type molecules, BTQBT films deposited at room temperature showed the highest mobility and on/off ratio of 0.2 cm2/Vs and 108, respectively, at optimal film growth conditions. These performances are almost comparable to those of pentacene and polythiophene thin films, indicating that BTQBT molecule is a prominent semiconducting material for high-speed organic transistors. It was also found that a tetracyanoquinodimethane (TCNQ) derivative showed an n-type semiconducting behavior with an electron mobility of 8.9 x 10-4 cm2/Vs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Horowitz, G. Adv. Mater. 10, 365(1998)Google Scholar
2. Crone, B. Dodabalapur, A. Lin, Y. -Y., Filas, R. W. Bao, Z. Laduca, A. Sarpeshkar, R. Katz, H. E. and Li, W. Nature 403, 521(2000)Google Scholar
3. Sirringhaus, H. Kawase, T. Friend, R. H. Shimoda, T. Inbasekaran, M. Wu, W. and Woo, E. P. Science 290, 2423(2000)Google Scholar
4. Maruyama, Y. Mol. Cryst. Liq. Cryst. 171, 287(1989)Google Scholar
5. Imaeda, K. Li, Y. Yamashita, Y. Inokuchi, H. and Sano, M. J. Mater. Chem. 5, 861(1995)Google Scholar
6. Xue, J. and Forrest, S. R. Appl. Phys. Lett. 79, 3714 (2001).Google Scholar
7. Takada, M. Graaf, H. Yamashita, Y. and Tada, H. Jpn. J. Appl. Phys. 41, L4 (2002).Google Scholar
8. Yamashita, Y. Suzuki, T. Mukai, T. and Saito, G. J. Chem. Soc., Chem. Commun. 1044 (1985).Google Scholar
9. Yamashita, Y. Suzuki, T. Saito, G. and Mukai, T. Chem. Lett. 1759 (1985).Google Scholar
10. Yamashita, Y. Tanaka, S. Imaeda, K. and Inokuchi, H. Chem. Lett. 1213 (1991).Google Scholar
11. Yamashita, Y. Tanaka, S. Imaeda, K. Inokuchi, H. and Sano, M. J. Org. Chem. 57, 5517 (1992).Google Scholar
12. Tada, H. Touda, H. Takada, M. and Matsushige, K. J. Porphyrins and Phthalocyanines 3, 667 (1999).Google Scholar
13. Tada, H. Touda, H. Takada, M. and Matsushige, K. Appl. Phys. Lett. 76, 873 (2000).Google Scholar
14. Brown, A. R. Leeuw, D. M. de, Lous, E. J. and Havinga, E. E. Synth. Met. 66, 257 (1994).Google Scholar
15. Bao, Z. Lovinger, A. J. and Brown, J. J. Am. Chem. Soc. 120, 207 (1998).Google Scholar
16. Facchetti, A. Deng, Y. Wang, A. Koide, Y. Sirringhaus, H. Marks, T. J. and Friend, R. H. Angew. Chem. Int. Ed. 39, 4547 (2000).Google Scholar
17. Haddon, R. C. Perel, A. S. Morris, R. C. Palstra, T. T. M. Hebard, A. F. and Fleming, R. M. Appl. Phys. Lett. 67, 121 (1995)Google Scholar
18. Kudo, K. Sumimoto, T. Hiraga, K. Kuniyoshi, S. and Tanaka, K. Jpn. J. Appl. Phys. 36, 184 (1997)Google Scholar
19. Vaterlein, C. Ziegler, B. Gebauer, W. Neureiter, H. Stodt, M. Weaver, M. S. Bauerle, P. Sokolowski, M., Bradley, D. D. C. and Umbach, E. Synth. Met. 76, 133 (1996).Google Scholar