Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T16:10:52.150Z Has data issue: false hasContentIssue false

Fibrin Gels as Cell-Instructive Substrates for Regenerative Medicine

Published online by Cambridge University Press:  19 August 2014

Kaitlin C. Murphy
Affiliation:
Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
Hillary E. Davis
Affiliation:
Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
Bernard Y-K Binder
Affiliation:
Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
J. Kent Leach
Affiliation:
Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616 Department of Orthopaedic Surgery, School of Medicine, University of California, Davis Sacramento CA 95817
Get access

Abstract

Fibrin hydrogels are an exciting platform for cell-based therapies, as they contain necessary cues for adhesion, can be remodeled by entrapped cells, and the biophysical properties can be modified with a plethora of strategies. Furthermore, fibrin acts as a provisional matrix in vivo for tissue regeneration. While the majority of studies seek to manipulate fibrin gel properties by changing the concentration of clotting proteins, these studies highlight our capacity to change bulk stiffness and fiber properties by supplementing the solutions with sodium chloride (NaCl). Physical properties including fiber thickness, porosity, compressive modulus, and fluid uptake capacity were dependent on NaCl content, with gels containing 2.60% (w/v) NaCl exhibiting compressive moduli threefold higher than gels without NaCl. These material properties, in turn, affected the gel morphology along with the osteogenic and pro-angiogenic response of entrapped mesenchymal stem/stromal cells (MSCs). The osteoconductivity of fibrin gels can be enhanced by inclusion of apatite-coated polymer substrata to nucleate mineral, while the efficacy of engineered fibrin gels to simultaneously deploy small molecules with cells to enhance endogenous angiogenic potential has been demonstrated. Collectively, these data demonstrate the broad capacity of engineered fibrin gels to regulate function of entrapped cells for use in tissue engineering and regenerative medicine.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

O'Keefe, R. J. and Mao, J., Tissue Eng Part B Rev 17, 389 (2011).CrossRefGoogle Scholar
Khan, S. N., Cammisa, F. P., Sandhu, H. S., Diwan, A. D., Girardi, F. P., and Lane, J. M., J Am Acad Orthop Surg 13, 77 (2004).CrossRefGoogle Scholar
Silber, J. S., Anderson, D. G., Daffner, S. D., Brislin, B. T., Leland, J. M., Hilibrand, A. S., Vaccaro, A. R., and Albert, T. J., Spine 28, 134 (2002).CrossRefGoogle Scholar
Kneser, U., Schaefer, D. J., Polykandriotis, E., and Horch, R. E., J Cell Mol Med 10, 7 (2005).CrossRefGoogle Scholar
Kosmidou, L., Toljanic, J. A., Moran, W. J., and Panje, W. R., Int J Oral Maxillofac Implants 13, 121 (1997).Google Scholar
Kanczler, J. M. and Oreffo, R. O. C., Eur Cell Mater 15, 100 (2007).CrossRefGoogle Scholar
Bruder, S. P., Kurth, A. A., Shea, M., Hayes, W. C., Jaiswal, N., and Kadiyala, S., J Orthop Res 16, 155 (1998).CrossRefGoogle Scholar
Caplan, A. I. and Dennis, J. E., J Cell Biochem 98, 1076 (2006).CrossRefGoogle Scholar
Quarto, R., Mastrogiacomo, M., Cancedda, R., Kutepov, S. M., Mukhachev, V., Lavroukov, A., Kon, E., and Marcacci, M., N Engl J Med 344, 385 (2001).CrossRefGoogle Scholar
Breen, A., O'Brien, T., and Pandit, A., Tissue Eng Part B Rev 15, 201 (2009).CrossRefGoogle Scholar
Ahmed, T. A. E., Dare, E. V., and Hincke, M., Tissue Eng Part B Rev14, 199 (2008).Google Scholar
Zarge, J. I., Husak, V., Huang, P., and Greisler, H. P., Am J Surg 174, 188 (1996).CrossRefGoogle Scholar
Weisel, J. W., in Advances in Protein Chemistry (Elsevier, 2005), pp. 247299.Google Scholar
Alston, S. M., Solen, K. A., Broderick, A. H., Sukavaneshvar, S., and Mohammad, S. F., Transl Res 149, 187 (2007).CrossRefGoogle Scholar
Marx, G., Transfus Med Rev 17, 287 (2002).CrossRefGoogle Scholar
Kjaergard, H. K., Velada, J. L., Pedersen, J. H., Fleron, H., and Hollingsbee, D. A., Thromb Res 98, 221 (1999).CrossRefGoogle Scholar
Albala, D. M. and Lawson, J. H., J Am Col Surg 202, 685 (2006).CrossRefGoogle Scholar
Dickneite, G., Metzner, H., Pfeifer, T., Kroez, M., and Witzke, G., Thromb Res 112, 73 (2003).CrossRefGoogle Scholar
Grassl, E. D., Oegema, T. R., and Tranquillo, R. T., J Biomed Mater Res 60, 607 (2001).CrossRefGoogle Scholar
Zhang, G., Wang, X., Wang, Z., Zhang, J., and Suggs, L., Tissue Eng 12, 9 (2006).CrossRefGoogle Scholar
Davis, H. E., Miller, S. L., Case, E. M., and Leach, J. K., Acta Biomater 7, 691 (2011).CrossRefGoogle Scholar
Adams, T. E., Arterio Thromb Vasc Biol 26, 1738 (2006).CrossRefGoogle Scholar
Murphy, K. C. and Leach, J. K., BMC Res Notes 5, 423 (2012).CrossRefGoogle Scholar
Davis, H. E., Rao, R. R., He, J., and Leach, J. K., J Biomed Mater Res A 90, 1021 (2009).CrossRefGoogle Scholar
Binder, B. Y. K., Sondergaard, C. S., Nolta, J. A., and Leach, J. K., PLoS ONE 8, e82134 (2013).CrossRefGoogle Scholar
Davis, H. E., Binder, B. Y. K., Schaecher, P., Yakoobinsky, D. D., Bhat, A., and Leach, J. K., Tissue Eng Part A 19, 1773 (2013).CrossRefGoogle Scholar
Fierro, F. A., Kalomoiris, S., Sondergaard, C. S., and Nolta, J. A., Stem Cells 29, 1727 (2011).CrossRefGoogle Scholar
Kean, T. J., Lin, P., Caplan, A. I., and Dennis, J. E., Stem Cells Int 2013, 732742 (2013).CrossRefGoogle Scholar