Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T03:02:01.032Z Has data issue: false hasContentIssue false

Fiber-Matrix Interfaces in Ceramic Composites

Published online by Cambridge University Press:  10 February 2011

T. M. Besmann
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6063, [email protected]
D. P. Stinton
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6063, [email protected]
E. R. Kupp
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6063, [email protected]
S. Shanmugham
Affiliation:
Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37922
P. K. Liaw
Affiliation:
Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37922
Get access

Abstract

The mechanical properties of ceramic matrix composites (CMCs) are governed by the relationships between the matrix, the interface material, and the fibers. In non-oxide matrix systems the use of compliant pyrolytic carbon or BN have been demonstrated to be effective interface materials, allowing for absorption of mismatch stresses between fiber and matrix and offering a poorly bonded interface for crack deflection. The resulting materials have demonstrated remarkable strain/damage tolerance together with high strength. Carbon or BN, however, suffer from oxidative loss in many service environments, and thus there is a major search for oxidation resistant alternatives. This paper will review the issues related to developing a stable and effective interface material for non-oxide matrix CMCs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Warren, R., Ceramic Matrix Composites (Chapman and Hall, London, 1992), pp. 111 Google Scholar
2. Karnitz, M. A., Craig, D. F., and Richlen, S. L., Am. Ceram. Soc. Bull. 70 (3), 430435 (1991).Google Scholar
3. Chawla, K.K., Ceramic Matrix Composites. (Chapman and Hall, London, 1993).Google Scholar
4. Prewo, K. M. and Brennan, J. J., J. Mat. Sci. 17, 23712383 (1982).Google Scholar
5. Marshall, D. B. and Evans, A. G., J. Am. Ceram. Soc. 68 (5), 225231 (1985).Google Scholar
6. McMurtry, C.H., Boecker, W. D. G., Seshardri, S. G., and Fanghi, J. S., Am. Ceram. Soc. Bull. 66 (2), 325329 (1987).Google Scholar
7. Becher, P. F. and Wei, G. C., Mater. Sci. Eng. A107, 257261 (1989).Google Scholar
8. Kodama, H., Suzuki, T., Sakamoto, H., and Miyoshi, T., J. Am. Ceram. Soc. 73 (3), 678683 (1990).Google Scholar
9. Besmann, T. M., Sheldon, B. W., Lowden, R. A., and Stinton, D. P., Science 253, 11041109 (1991).Google Scholar
10. Brennan, J. J., J. de Physique, Colloque C5 Suppl. 10 (49), 791809 (1988).Google Scholar
11. Naslain, R., Dugne, O., Guette, A., Sevely, J., Robin-Brosse, C., Rocher, J. P., and Cotteret, J., J. Am. Ceram. Soc. 73 (3), 678: 683 (1991).Google Scholar
12. Lowden, R. A., Ceram. Trans. 19, 619630 (1991).Google Scholar
13. Kerans, R. J., Scripta Metall, and Mater. 32 (4), 505509 (1995).Google Scholar
14. Kerans, R. J., Scripta Metall, and Mater. 31 (8), 10791084 (1994).Google Scholar
15. Kerans, R. J., J. Am. Ceram. Soc. 79 (6), 16641668 (1996).Google Scholar
16. Singh, R. N. and Reddy, S. K., J. Am. Ceram. Soc. 79 (1), 137147 (1996).Google Scholar
17. Donald, I. W. and McMillan, P. W., J. Mater. Sci. 11, 949972 (1976).Google Scholar
18. Evans, A. G. and Marshall, D. B., Acta Metall. 37, 25672583 (1989).Google Scholar
19. Naslain, R. in High Temperature Ceramic Matrix Composites II: Manufacturing and Materials Development, edited by Evans, A. G. and Naslain, R. (Ceram. Trans., Vol. 58, American Ceramic Society, Westerville, Ohio, 1995) pp. 2340.Google Scholar
20. Hsueh, C.-H., Becher, P. F., and Angelini, P., J. Am. Ceram. Soc. 71 (11), 929933 (1988).Google Scholar
21. Karandikar, P. and Chou, T.-W. in Handbook on Continuous Fiber-Reinforced Ceramic Matrix Composites, edited by Loehman, R. L., El-Rahaiby, S. K., and Wachtman, J. B. (American Ceramic Society, Westerville, Ohio, 1995) pp. 355429.Google Scholar
22. Lin, H.-T., Becher, P. F., and Tortorelli, P. F. in Ceramic Matrix Composites - Advanced High-Temperature Structural Materials, edited by Lowden, R. A., Ferber, M. K., Hellmann, J. R., Chawla, K. K., and DiPietro, S. G. (Mater. Res. Soc. 365, Pittsburgh, PA 1995) pp. 435440.Google Scholar
23. Lowden, R. A., Schwarz, O. J., and More, K. L., Ceram. Eng. Sci. Proc. 14 (7–8), 375384 (1993).Google Scholar
24. Walukas, D. M., M.S. thesis, The University of Tennessee, 1993.Google Scholar
25. Shanmugham, S., Stinton, D. P., Rebillat, F., Bleier, A., Besmann, T. M., Lara-Curzio, E., and Liaw, P. K., Ceram. Eng. Sci. Proc. 16 (4), 389399 (1995).Google Scholar
26. Mah, T., Hecht, N. L., McCullum, D. E., Hoenigman, J. R., Kim, H. M., Katz, A. P., and Lipsitt, H. A., J. Mater. Sci. 19, 11911201 (1984).Google Scholar
27. Simon, G. and Bunsell, A. R., J. Mater. Sci. 19, 36583670 (1984).Google Scholar
28. Frety, N., Molins, R., and Boussuge, M., J. Mater. Sci. 27, 50845090 (1992).Google Scholar
29. Lowden, R. A., Schwarz, O. J., and Stinton, D. P. in Proceedings of the Eighth Annual Conference on Fossil Energy Materials, edited by Judkins, R. R. (CONF-9405143, ORNL/FMP-94/1, NTIS, Springfield, Virginia 1994) pp. 105116.Google Scholar
30. Besmann, T. M., Shanmugham, S., Kupp, E. R., and Stinton, D. P. in Proceedings of the American Society for Composites - Eleventh Technical Conference, edited by Johnson, W. S. (Technomic Publishing Co., Lancaster, PA, 1996) pp. 371380.Google Scholar
31. Gulden, T. D., Hazlebeck, D. A., Norton, K. P., and Strecken, H. H., Ceram. Eng. Sci. Proc. 11 (9–10), 15391553 (1990).Google Scholar
32. Hay, R. S., Petry, M. D., Keller, K. A., Cinibulk, M. K., and Welch, J. R. in Ceramic Matrix Composites - Advanced High-Temperature Structural Materials, edited by Lowden, R. A., Ferber, M. K., Hellmann, J. R., Chawla, K. K., and DiPietro, S. G. (Mater. Res. Soc. 365, Pittsburgh, PA 1995) pp. 377382.Google Scholar