Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T01:58:49.338Z Has data issue: false hasContentIssue false

A Fetish for Gallium Arsenide

Published online by Cambridge University Press:  10 February 2011

Andrew R. Barron*
Affiliation:
Department of Chemistry and Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX 77005
Get access

Abstract

An overview of the development of a new dielectric material, cubic-GaS, from the synthesis of new organometallic compounds to the fabrication of a new class of gallium arsenide based transistor is presented as a representative example of the possibility that inorganic chemistry can directly effect the development of new semiconductor devices. The gallium sulfido compound [(tBu)GaS]4, readily prepared from tri-tert-butyl gallium, may be used as a precursor for the growth of GaS thin films by metal organic chemical vapor deposition (MOCVD). Photoluminescence and electronic measurements indicate that this material provides a passivation coating for GaAs. Furthermore, the insulating properties of cubic-GaS make it suitable as a the insulating gate layer in a new class of GaAs transistor: a field effect transistor with a sulfide heterojunction (FETISH).

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] MOSFETs are a subset of MISFETs where the insulator is specifically an oxide, for example, in the case of a silicon MISFET device, the insulator is SiO2, hence MOSFET.Google Scholar
[2] Lilienfeld, J. E., US Patent 1,745,175 (1930)Google Scholar
[3] Heil, O., UK Patent 439,457 (1935).Google Scholar
[4] Lile, D. L., Solid State Electron., 21, 1199 (1978).Google Scholar
[5] Waho, T. and Yanagawa, F., IEEE Electron Device Lett., 9, 548 (1988).Google Scholar
[6] Hirano, M., IEEE Trans. Electron Devices, 36, 2217 (1989).Google Scholar
[7] We note that in the case of a silicon based MISFET (a MOSFET) it was nearly three decades before SiO2 of suitable quality was grown on silicon, thus allowing commerciallization of “silicon chips”. See, Nicollian, E. H. and Brews, J. R., MOS, Physics and Technology, Wiley, New York, (1982).Google Scholar
[8] See for example, Bousetta, A. and Truscott, W. S., J. Appl. Phys. 68, 5709 (1990).Google Scholar
[9] (a) Beck, S. M. and Wessel, J. E., Appl. Phys. Lett., 50, 149 (1987). (b) Z. Liliental-Weber, C. W. Wilmsen, K. M. Geib, P. D. Kirchner, J. M. Baker and J. M. Woodall, J. Appl. Phys., 67, 1863 (1990).Google Scholar
[10] Logan, R. A., Schwartz, B., and Sundburg, W. J., J. Electrochem. Soc., 120, 1385 (1973).Google Scholar
[11] Hasegawa, H., Forward, K. E., and Hartnagel, H. L., Appl. Phys. Lett., 26, 567 (1975).Google Scholar
[12] Hoffbauer, M. A., Cross, J. B., and Bermudez, U. M., Appl. Phys. Lett., 57, 2193 (1990).Google Scholar
[13] Yablonovitch, E., Sandroff, C. J., Bhat, R., and Gmitter, T., Appl. Phy. Lett., 51, 439 (1987).Google Scholar
[14] Power, M. B. and Barron, A. R., J. Chem. Soc., Chem. Commun., 1315 (1991).Google Scholar
[15] Power, M. B., Ziller, J. W., Tyler, A. N. and Barron, A. R., Organometallics, 11, 1055 (1992).Google Scholar
[16] Cleaver, W. M., Spdith, M., Hnyk, D., McMurdo, G., Power, M. B., Stuke, M., Rankin, D. W. H., and Barron, A. R., Organometallics, 14, 690 (1995).Google Scholar
[17] Power, M. B., Barron, A. R., Hnyk, D., Robertson, H. E., and Rankin, D. W. H., Adv. Mater. Optics Electron., in press.Google Scholar
[18] MacInnes, A. N., Power, M. B., and Barron, A. R., Chem. Mater., 4, 11 (1992).Google Scholar
[19] Maclnnes, A. N., Power, M. B., and Barron, A. R., Chem. Mater., 5, 1344 (1993).Google Scholar
[20] Wang, Y., Darici, Y., Holloway, P. H., J. Appl. Phys., 71, 2746 (1992), and references therein.Google Scholar
[21] MacInnes, A. N., Power, M. B., Barron, A. R., Jenkins, P. P., Hepp, A. F., Appl. Phys. Lett., 62,711 (1993).Google Scholar
[22] Tabib-Azar, M., Kang, S., Maclnnes, A. N., Power, M. B., Barron, A. R., Jenkins, P. P., Hepp, A. F., Appl. Phys. Letts., 63, 625 (1993).Google Scholar
[23] Jenkins, P. P., Maclnnes, A. N., Tabib-Azar, M., and Barron, A. R., Science, 263, 1751 (1994).Google Scholar