Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T02:36:03.067Z Has data issue: false hasContentIssue false

Ferromagnetism in Fe-doped β-Ga2O3 Prepared by a Solid State Reaction

Published online by Cambridge University Press:  01 February 2011

Hajime Hojo
Affiliation:
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
Koji Fujita
Affiliation:
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
Katsuhisa Tanaka
Affiliation:
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
Kazuyuki Hirao
Affiliation:
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
Get access

Abstract

Polycrystalline β-Ga2O3 doped with Fe3+, (Ga1−x Fex)2O3 (x=0.02, 0.05, 0.08 and 0.1), has been prepared by a solid-state reaction. Ferromagnetic ordering is observed at room temperature for samples prepared by β-Ga2O3 and Fe(NO3)3·9H2O and sintered at low temperatures below 900 °C, while the sintering at temperatures above 900 °C leads to the paramagnetic behavior. X-ray diffraction analysis for the samples sintered at 500 °C reveals that the single phase of β-Ga2O3 can be obtained up to x=0.08 without traces of secondary phase or other impurity. Magnetization as a function of temperature shows superparamagnetic or cluster spin-glass behavior, indicating that long-range ferromagnetic ordering does not exist in the present systems. It is suggested that the inhomogeneous distribution of Fe3+ is responsible for the ferromagnetic behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ueda, K., Tabata, H. and Kawai, T., Appl. Phys. Lett. 79, 988 (2001).Google Scholar
2. Sharma, P., Gupta, A., Rao, K. V., Owens, F. J., Sharma, R., Ahuja, R., Guillen, J. M. O., Johansson, B. and Gehring, G. A., Nature Mater. 2, 673 (2003).Google Scholar
3. Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S. and Koinuma, H., Science 291, 854 (2001).Google Scholar
4. Ogale, S. B., Choudhary, R. J., Buban, J. P., Lofland, S. E., Shinde, S. R., Kale, S. N., Kulkarni, V. N., Higgins, J., Lanci, C., Simpson, J. R., Browning, N. D., Das Sarma, S., Drew, H. D., Greene, R. L. and Venkatesan, T., Phys. Rev. Lett. 91, 077205 (2003).Google Scholar
5. Coey, J. M. D., Douvalis, A. P., Fitzgeranld, C. B. and Venkatesan, M., Appl. Phys. Lett. 84, 1332 (2004).Google Scholar
6. Ohno, H., Science 281, 951 (1998).Google Scholar
7. Ueda, N., Hosono, H., Waseda, R. and Kawazoe, H., Appl. Phys. Lett. 70, 3561 (1997).Google Scholar
8. Orita, M., Ohta, H., Hirano, M. and Hosono, H., Appl. Phys. Lett. 77, 4166 (2000).Google Scholar
9. Coutts, T. J., Young, D. L. and Li, X., Mater. Res. Soc. Bull. 25, 58 (2000).Google Scholar
10. Geller, S., J. Chem. Phys. 33, 676 (1960).Google Scholar
11. Binet, L., Gourier, D. and Minot, C., J. Solid State Chem. 11 3, 420 (1994).Google Scholar
12. Morin, F. J., Phys. Rev. 78, 819 (1950).Google Scholar
13. Itoh, M., Natori, I., Kubota, S. and Motoya, K., J. Phys. Soc. Jpn. 63, 1486 (1994).Google Scholar
14. Mukherjee, S., Ranganathan, R., Anilkumar, P. S. and Joy, P. A., Phys. Rev. B 54, 9267 (1996).Google Scholar
15. Luo, W., Nagel, S. R., Rosenbaum, T. F. and Rosenweig, R. E., Phys. Rev. Lett. 67, 2721 (1991).Google Scholar
16. Garcia, J. L., Lopez, A., Lazaro, F. J. and Martinez, C., J. Magn. Magn. Mater. 157–158, 272 (1996).Google Scholar
17. Geschwind, S., Phys. Rev. Lett. 3, 207 (1959).Google Scholar
18. Remeika, J. P., J. Appl. Phys. 31, 263S (1960).Google Scholar