Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-24T03:17:13.978Z Has data issue: false hasContentIssue false

Ferromagnetism and Near-infrared Luminescence in Neodymium and Erbium Doped Gallium Nitride via Diffusion

Published online by Cambridge University Press:  31 January 2011

Melvyn Oliver Luen
Affiliation:
[email protected], North Carolina State University, Electrical and Computer Engineering, Raleigh, North Carolina, United States
Neeraj Nepal
Affiliation:
[email protected], North Carolina State University, Electrical and Computer Engineering, Raleigh, North Carolina, United States
Pavel Frajtag
Affiliation:
[email protected], North Carolina State University, Materials Science and Engineering, Raleigh, North Carolina, United States
John Zavada
Affiliation:
[email protected], North Carolina State University, Electrical and Computer Engineering, Raleigh, North Carolina, United States
Ei Brown
Affiliation:
[email protected]@gmail.com, Hampton University, Physics, Hampton, Virginia, United States
Uwe Hommerich
Affiliation:
[email protected], Hampton University, Department of Physics, Hampton, Virginia, United States
Salah M. Bedair
Affiliation:
[email protected], North Carolina State University, Electrical and Computer Engineering, Raleigh, North Carolina, United States
Nadia El-Masry
Affiliation:
[email protected], North Carolina State University, Materials Science and Engineering, Raleigh, North Carolina, United States
Get access

Abstract

In this study, we report on the diffusion of neodymium (Nd) and erbium (Er) into n-type and undoped GaN and subsequent measurements of the room-temperature (RT) magnetic and optical properties. The diffusion profile has been measured via secondary ion mass spectroscopy (SIMS) with rare-earth (RE) concentration yields of up to 1×1018/cm3. The ferromagnetic properties were measured using an alternating gradient magnetometer (AGM) giving a saturation magnetization (Ms) of up to 3.17emu/cm3 for the RE-diffused layer. The photoluminescence (PL) emission of the Nd-diffused and Er-diffused GaN is observable in the near-infrared (NIR) and infrared (IR) regions of the spectrum, respectively. The Nd-diffused GaN samples show NIR emission at 1064nm and 1350nm, while Er-diffused GaN samples have IR emission at 1546nm. This appears to be the first successful result of Nd diffusion doping into GaN crystals, and the first demonstration of above RT ferromagnetism involving GaN diffused with Nd. Details of our ferromagnetic and optical emission studies, related to the RE diffusion into GaN, are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Reed, M. L., El-Masry, N. A., Stadelmaier, H. H., Ritums, M. K., Reed, M. J., Parker, C. A., Roberts, J. C., and Bedair, S. M., Appl. Phys. Lett,. 79, 3473 (2001).Google Scholar
2 Sonoda, S., Shimizu, S. et al., J. Cryst. Growth, 237–239, 1358 (2002).Google Scholar
3 Zavada, J. M., Nepal, N. et al., Appl. Phys. Lett,. 91, 054106 (2007).Google Scholar
4 Ting, Y-S., Chen, C-C. et al., Optical Materials, 24, 515518 (2003).Google Scholar
5 Chen, C-C., Ting, Y-S. et al., Solid-State Electronics, 47, 529531 (2003).Google Scholar
6 Pearton, S. J., Cho, H. et al., Appl. Phys. Lett,. 75, 2939 (1999).Google Scholar
7 Hughes, I. D., Däne, M. et al., Nature, 446, 650653 (2007).Google Scholar
8 Bang, H., Sawahata, J. et al., Phys. Stat. Sol. (c), 0(7), 28742877 (2003).Google Scholar
9 Aerts, C. M., Strange, P. et al., Phys. Rev. B, 69, 045115 (2004).Google Scholar
10 Walle, C. G. Van de and Neugebauer, J., Brazilian Journal of Physics 26, 163 (1996).Google Scholar
11 Dietl, T., Physica E, 35 (2006) 293299.Google Scholar
12 Steckl, A. J., Heikenfeld, J. C., Lee, D. S., Garter, M., Baker, C. C., Wang, Y. Q. and Jones, R., IEEE J. Select. Top. Quantum Electron,. 8, 749766 (2002).Google Scholar
13 Kim, J. H. and Holloway, P. H., Adv. Mater,. 17, 9196 (2005).Google Scholar
14 Hansen, D. M., Zhang, R. et al., Appl. Phys. Lett. 72, 1244 (1998).Google Scholar
15 Birkhahn, R. and Steckl, A. J., Appl. Phys. Lett. 73, 2143 (1998).Google Scholar
16 MacKenzie, J. Devin, Abernathy, C. R., Pearton, S. J., Hömmerich, U., Seo, J. T., and Wilson, R. G., Appl. Phys. Lett., 72 2710 (1998).Google Scholar
17 Lee, D. S., Heikenfeld, J. et al., Appl. Phys. Lett., 79, 719 (2001).Google Scholar
18 Readinger, E. D., Metcalfe, G. D. et al., Appl. Phys. Lett., 92 061108 (2008).Google Scholar