Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:41:29.469Z Has data issue: false hasContentIssue false

Ferromagnetic Single-Electron Transistor with RC Gate

Published online by Cambridge University Press:  10 February 2011

Jun-ichi Shirakashi
Affiliation:
Akita Prefectural University, 84–4 Ebinokuchi, Tsuchiya, Honjo, Akita 015–0055, JAPAN.
Yasushi Takemura
Affiliation:
Yokohama National University, 79–5 Tokiwadai, Hodogaya, Yokohama, Kanagawa 240–8501, JAPAN.
Get access

Abstract

Ferromagnetic single-electron transistors coupled to the controlling gate potential by the gate resistance and gate capacitance in series are studied quantitatively. In this type of the device, several metastable charge states are possible within the Coulomb blockade range. The enhancement and hysteresis of tunnel magnetoresistance on drain and gate voltages are predicted. Inelastic macroscopic quantum tunneling of charge and existence of several charge states play an important role for the unique behavior of the tunnel magnetoresistance. This implies that RC-coupled ferromagnetic single-electron transistors have a new functionality as novel magnetoresistive nanostructure devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Likharev, K. K., IEEE Trans. Magn. MAG- 23, 1142 (1987).Google Scholar
2. Takahashi, S. and Maekawa, S., Phys. Rev. Lett. 80, 1758 (1998).Google Scholar
3. Shirakashi, J. and Takemura, Y., J. Appl. Phys. 89, 7365 (2001).Google Scholar
4. Ono, K., Shimada, H., and Ootuka, Y., J. Phys. Soc. Jpn. 66, 1261 (1997).Google Scholar
5. Shimada, H., Ono, K., and Ootuka, Y., J. Phys. Soc. Jpn. 67, 1359 (1998).Google Scholar
6. Ono, K., Shimada, H., and Ootuka, Y., J. Phys. Soc. Jpn. 67, 2852 (1998).Google Scholar
7. Korotkov, A. N., Appl. Phys. Lett. 72, 3226 (1998).Google Scholar
8. Pashkin, Yu. A., Nakamura, Y., and Tsai, J. S., Appl. Phys. Lett. 74, 132 (1999).Google Scholar
9. Shirakashi, J. and Takemura, Y., J. Appl. Phys. 91, 7442 (2002).Google Scholar
10. Averin, D. V. and Nazarov, Yu. V., Phys. Rev. Lett. 65, 2446 (1990).Google Scholar
11. Averin, D. V. and Nazarov, Yu. V., in Single Charge Tunneling, Coulomb Blockade Phenomena in Nanostructures, edited by Grabert, H. and Devoret, M. H. (Plenum, New York, 1992), p. 217.Google Scholar
12. Johnson, M. and Silsbee, R. H., Phys. Rev. Lett. 55, 1790 (1985).Google Scholar
13. Johnson, M., Phys. Rev. Lett. 70, 2142 (1993).Google Scholar
14. Johnson, M. and Silsbee, R. H., Phys. Rev. B 37, 5326 (1988).Google Scholar
15. Tedrow, P. M. and Meservey, R., Phys. Rep. 238, 174 (1994).Google Scholar
16. Barnaś, J. and Fert, A., Phys. Rev. Lett. 80, 1058 (1998).Google Scholar
17. Majumdar, K. and Hershfield, S., Phys. Rev. B 57, 11521 (1998).Google Scholar
18. Averin, D. V. and Likharev, K. K., in Mesoscopic Phenomena in Solids, edited by Altshuler, B. L., Lee, P. A. and Webb, R. A. (North-Holland, Amsterdam, 1991), p. 173.Google Scholar