Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:33:03.209Z Has data issue: false hasContentIssue false

Ferromagnetic Mn-Doped GaN Nanowires for Nanospintronics

Published online by Cambridge University Press:  01 February 2011

Doo Suk Han
Affiliation:
Department of Chemistry, Korea University, Jochiwon 339-700 Korea;
Chan Woong Na
Affiliation:
Department of Chemistry, Korea University, Jochiwon 339-700 Korea;
Woo Sung Jang
Affiliation:
Department of Chemistry, Korea University, Jochiwon 339-700 Korea;
Seung Yong Bae
Affiliation:
Department of Chemistry, Korea University, Jochiwon 339-700 Korea;
Jeunghee Park
Affiliation:
Department of Chemistry, Korea University, Jochiwon 339-700 Korea;
Get access

Abstract

We report Mn-doped GaN nanowires exhibiting ferromagnetism even at room temperature. The growth of single-crystalline wurtzite structured GaN nanowires doped homogeneously with about 5 atomic % Mn was achieved by chemical vapor deposition using the reaction of Ga/GaN/MnCl2 with NH3. The ferromagnetic hysteresis at 5 and 300 K and the temperature-dependent magnetization curves suggest the Curie temperature around 300 K. Negative magnetoresistance of individual nanowires was observed at the temperatures below 100 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Ohno, H., Science 281, 951 (1998).Google Scholar
(2) Fiederling, R., Keim, M., Reuscher, G., Ossau, W., Schmidt, G., Waag, A., and Molenkamp, L. W., Nature (London) 402, 787 (1999).Google Scholar
(3) Ohno, Y., Young, D. K., Beschoten, B., Matsukura, F., Ohno, H., and Awschalom, D. D., Nature (London) 402, 790 (1999).Google Scholar
(4) Ohno, H., Chiba, D., Matsukura, F., Omiya, T., Abe, E., Dietl, T., Ohno, Y., and Ohtani, K., Nature (London) 408, 944 (2000).Google Scholar
(5) Dietl, T., Ohno, H., Matsukura, F., Cibert, J., and Ferrand, D., Science 287, 1019 (2000).Google Scholar
(6) Wolf, S. A., Awschalom, D. D., Buhrman, R. A., Daughton, J. M., Molnár, S. von, Roukes, M. L., Chtchelkanova, A. Y., and Treger, D. M., Science 294, 1488 (2001).Google Scholar
(7) Ohno, H. and Matsukura, F., Solid State Commun. 117, 179 (2001).Google Scholar
(8) Theodoropoulou, N., Hebard, A. F., Overberg, M. E., Abernathy, C. R., Pearton, S. J., Chu, S. N. G., and Wilson, R. G., Appl. Phys. Lett. 78, 3475 (2001).Google Scholar
(9) Reed, M. L., El-Mastry, N. A., Stadelmaier, H. H., Ritums, M. K., Reed, M. J., Parker, C. A., Roberts, J. C., and Bedair, S. M., Appl. Phys. Lett. 79, 3473 (2001).Google Scholar
(10) Sasaki, T., Sonoda, S., Yamamoto, Y., Suga, K., Shimizu, S., Kindo, K., and Hori, H., J. Appl. Phys. 91, 7911 (2002).Google Scholar
(11) Sardar, K., Raju, A. R., Bansal, B., Venkataraman, V., and Rao, C. N. R., Solid State Commun. 125, 55 (2003).Google Scholar
(12) Lee, J. M., Lee, K. I., Chang, J. Y., Ham, M. H., Huh, K. S., Myung, J. M., Hwang, W. J., Shin, M. W., Han, S. H., Kim, H. J., and Lee, W. Y., Microelect. Eng. 69, 283 (2003).Google Scholar
(13) Yoon, T., Park, C. S., Kim, H. J., Kim, Y. G., Kang, T. W., Jeong, M. C., Ham, M. H., and Myoung, J. M.. J. Appl. Phys. 95, 591 (2004).Google Scholar
(14) Zhang, F., Chen, N., Liu, X., Liu, Z., Yang, S., and Chai, C., J. Cryst. Growth 262, 287 (2004).Google Scholar
(15) Giraud, R., Kuroda, S., Marcet, S., Bellet-Amalric, E., Biquard, X., Barbara, B., Frauchart, D., Ferrand, D., Cibert, J., and Mariette, H., Europhys. Lett. 65, 553 (2004).Google Scholar
(16) Zajac, M., Doradzinski, R., Gosk, J., Szczytko, J., Lefeld-Sosnowska, M., Kaminska, M., Twardowski, A., Palczewska, M., Grzanka, E., and Gebicki, W., Appl. Phys. Lett. 78, 1276 (2001).Google Scholar
(17) Overberg, M. E., Abernathy, C. R., Pearton, S. J., Theodoropoulou, N. A., McCarthy, K. T., and Hebard, A. F., Appl. Phys. Lett. 79, 1312 (2001).Google Scholar
(18) Deepak, F. L., Vanitha, P. V., Govindaraj, A., and Rao, C. N. R., Chem. Phys. Lett. 374, 314 (2003).Google Scholar
(19) Bae, S. Y., Seo, H. W., Park, J., Yang, H., Kim, H., and Kim, S., Appl. Phys. Lett. 82, 4564 (2003).Google Scholar
(20) Lee, G. H., Huh, S. H., Jeong, J. W., Choi, B. J., Kim, S. H., and Ri, H.-C., J. Am. Chem. Soc. 124, 12094 (2002).Google Scholar
(21) Seo, W. S., Jo, H. H., Lee, K., Kim, B., Oh, S. J., and Park, J. T., Angew. Chem. 43, 1115 (2004).Google Scholar
(22) Tanaka, M., Harbison, J. P., DeBoeck, J., Sands, T., Phillips, B., Cheeks, T. L., and Keramidas, V. G., Appl. Phys. Lett. 62, 1565 (1993).Google Scholar
(23) Ohno, H., Munekata, H., Penney, T., Molnár, S. von, and Chang, L. L., Phys. Rev. Lett. 68, 2664 (1992).Google Scholar