Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-05T05:23:34.275Z Has data issue: false hasContentIssue false

Ferromagnetic Ge1-xMx (M = Mn, Co, and Fe) Nanowires

Published online by Cambridge University Press:  26 February 2011

Yong Jae Cho
Affiliation:
[email protected], Korea University, Department of Material Chemistry, In the building of school of life science and biotechnilogy Rm #235, 5-ka,Anam-dong Sungbuk-ku Seou, Seoul, 136-701, Korea, Republic of, 02-3290-3973, 02-3290-3992
chang hyun Kim
Affiliation:
[email protected], Korea University, Department of Material Chemistry, in the building of school of life science and biotechnology Rm#235 5-ka, Anam-dong Sungbuk-ku, Seoul, 136-701, Korea, Republic of
jeunghee Park
Affiliation:
[email protected], Korea University, Department of Material Chemistry, in the building of school of life science and biotechnology Rm#235 5-ka, Anam-dong Sungbuk-ku, Seoul, 136-701, Korea, Republic of
Get access

Abstract

We synthesized Ge and Ge1-xMx (M = Mn, Co, and Fe, x ≤ 0.2) nanowires using thermal vapour transport method. All nanowires consisted of single-crystalline Ge nanocrystals grown uniformly with the [111] direction. High-resolution X-ray diffraction pattern shows no cluster formation for all Ge1-xMx nanowires. The Mn and Fe doping decreases the lattice constant, but not Co doping. X-ray absorption spectroscopy and X-ray magnetic circular dichroism measurement revealed that the Mn2+ and Fe2+ ions preferentially occupy the tetrahedral sites, substituting for Ge. We suggest that the Mn or Fe ions produce dopant-acceptor hybridization with host defects in p-type Ge, but not Co ions. The magnetic moment of Mn2+ ions reaches a maximum for x = ∼ 0.1, which is much larger than that of the Fe2+ ions. The magnetization measurement also confirms the room-temperature ferromagnetism of Mn-doped Ge nanowires, which is maximized at x = ∼ 0.1. We conclude that the Mn ions are most efficiently doped into the Ge nanowires to form a ferromagnetic semiconductor.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.(a) Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; von Molnár, S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M. Science 2001, 294, 1488. (b) Ohno, H. Science, 1998, 281, 951.10.1126/science.1065389Google Scholar
2. Huang, X.; Makmal, A.; Chelikowsky, R.; Kronik, L. Phys. Rev. Lett. 2005, 94, 236801.10.1103/PhysRevLett.94.236801Google Scholar
3. Park, Y. D.; Hanbicki, A. T.; Erwin, S. C.; Helberg, C.S.; Sullivan, J. M.; Mattson, J. E.; Ambrose, T. F.; Wilson, A.; Spanos, G.; Jonker, B. T. Science, 2002, 295, 651.10.1126/science.1066348Google Scholar
4. Tsui, F.; He, L.; Ma, L.; Tkachuk, A.; Chu, Y. S.; Nakajima, K.; Chikyow, T. Phys. Rev. Lett. 2003, 91, 177203.10.1103/PhysRevLett.91.177203Google Scholar
5. Choi, S.; Hong, S. C.; Cho, S.; Kim, Y.; Ketterson, J. B.; Jung, C.-U.; Rhie, K.; Kim, B.-J.; Kim, Y. C. Appl. Phys. Lett.2002, 81, 3606.Google Scholar
6.(a)Zeng, C.; Erwin, S. C.; Feldman, L. C.; Li, A. P.; Jin, R.; Thompson, J. R.; Weitering, H. H. Appl. Phys. Lett. 2003, 83, 5002. (b) Li, A. P.; Wendelken, J. F.; Shen, J.; Feldman, L. C.; Thompson, J. R.; Weitering, H. H. Phys. Rev. B 2005, 72, 195205. (c) Li, A. P.; Shen, J.; Thompson, J. R.; Weitering, H. H. Appl. Phys. Lett. 2005, 86, 152507. (d) Li, A. P.; Zeng, C.; van Benthem, K.; Chisholm, M. F.; Shen, J.; Nageswara Rao, S. V. S.; Dixit, S. K.; Feldman, L. C.; Petukhov, A. G.; Foygel, M.; Weitering, H. H. Phys. Rev. B 2007, 75, 201201.10.1063/1.1633684Google Scholar
7.(a) D'Orazio, F.; Lucari, F.; Santucci, S.; Picozzi, P.; Verna, A.; Passacantando, M.; Pinto, N.; Morresi, L.; Gunnella, R.; Murri, R. J. Magn. Magn. Mater. 2003, 262, 158. (b) Pinto, N.; Morresi, L.; Gunnella, R.; Murri, R.; D'Ozario, F.; Lucari, F.; Santucci, S.; Picozzi, P.; Passacantando, M.; Verna, A. J. Mater. Sci. 2003, 14, 337. (a) Stroppa, A.; Picozzi, S.; Continenza, A. Phys. Rev. B 2003, 68, 155203. (b) Continenza, A.; Antoniella, F.; Picozzi, S. Phys. Rev. B 2004, 70, 035310. (c) Gunnella, R.; Morresi, L.; Pinto, N.; Murri, R.; Ottaviano, L.; Passacantando, M.; D'Ozario, F.; Lucari, F. Surf. Sci. 2005, 577, 22. (d) Pinto, N.; Morresi, L.; Ficcadenti, M.; Murri, R.; D'Ozario, F.; Lucari, F.; Boarino, L.; Amato, G. Phys. Rev. 2005, 72, 165203. (e) Picozzi, S.; Ottaviano, L.; Passacantando, M.; Profeta, G.; Continenza, A.; Priolo, F.; Kim, M.; Freeman, A. J. Appl. Phys. Lett. 2005, 86, 062501. (f) Verna, A.; Ottaviano, L.; Passacantando, M.; Santucci, S.; Picozzi, P.; D'Orazio, F.; Lucari, F.; De Biase, M.; Gunnella, R.; Berti, M.; Gasparotto, A.; Impellizzeri, G.; Priolo, F. Phys. Rev. B 2006, 74, 085204. (g) Ottaviano, L.; Passacantando, M.; Picozzi, S.; Continenza, A.; Gunnella, R.; Verna, A.; Bihlmayer, G.; Impellizzeri, G.; Priolo, F. Appl. Phys. Lett. 2006, 88, 061907. (h) Ottaviano, L.; Parisse, P.; Passacantando, M.; Picozzi, S.; Verna, A.; Impellizzeri, G.; Priolo, F. Surf. Sci. 2006, 600, 4723. (i) Passacantando, M.; Ottaviano, L.; D'Ozario, F.; Lucari, F.; De Biase, M.; Impellizzeri, G.; Priolo, F. Phys. Rev. B 2006, 73, 195207.10.1016/S0304-8853(03)00041-6Google Scholar
8. Cho, Y. M.; Yu, S. S.; Ihm, Y. E.; Kim, D.; Kim, H.; Baek, J. S.; Kim, C. S.; Lee, B. T. J. Magn. Magn. Mater. 2004, 282, 385.10.1016/j.jmmm.2004.04.089Google Scholar
9. Kang, J.-S.; Kim, G.; Wi, S. C.; Lee, S. S.; Choi, S.; Cho, S.; Han, S. W.; Kim, K. H.; Song, H. J.; Shin, H. J.; Sekiyama, A.; Kasai, S.; Suga, S.; Min, B. I. Phys. Rev. Lett. 2005, 94, 147202.10.1103/PhysRevLett.94.147202Google Scholar
10. Sugahara, S.; Lee, K. L.; Yada, S.; Tanaka, M. Jp. J. Appl. Phys. 2005, 44, L1426.10.1143/JJAP.44.L1426Google Scholar
11. Jaeger, C.; Bihler, C.; Vallaitis, T.; Goennenwein, S. T.B.; Opel, M.; Gross, R.; Brandt, M. S. Phys. Rev. B 2006, 74, 045330.10.1103/PhysRevB.74.045330Google Scholar
12. Li, H.; Wu, Y.; Guo, Z.; Luo, P.; Wang, S. J.Appl. Phys. 2006, 100, 103908.10.1063/1.2375015Google Scholar
13. Thaler, G.; Frazier, R.; Gila, B.; Stapleton, J.; Davidson, M.; Abernathy, C. R.; Pearton, S. J.; Segre, C. Appl. Phys. Lett. 2004, 84, 1314.10.1063/1.1649819Google Scholar
14.(a) Kulkarni, J. S.; Kazakova, O.; Erts, D.; Morris, M. A.; Shaw, M. T.; Holmes, J. D. Chem. Mater. 2005, 17, 3615. (c) Kazakova, O.; Kulkarni, J. S.; Holmes, J. D.; Demokritov, S. O. Phys. Rev. B. 2005, 72, 94415. (d) Kazakova, O.; Kulkarni, J. S.; Arnold, D. C.; Holmes, J. D. J. Appl. Phys.2007, 101, 9H108.10.1021/cm050352aGoogle Scholar
15. Wang, X.; Xu, J.; Zhang, B.; Yu, H.; Wang, J.; Zhang, X.; Yu, J.; Li, Q. Adv. Mater. 2006, 18, 2476.Google Scholar
16. Kang, Y. J.; Kim, D. S.; Lee, S. H.; Park, J.; Chang, J.; Moon, J. Y.; Lee, G.; Yoon, J.; Jo, Y.; Jung, M.–H. J. Phys. Chem. C 2007, 111, 14956.10.1021/jp074289jGoogle Scholar
17. Kittilstved, K. R.; Liu, W. K.; Gamelin, R. Nature Mater. 2006, 5, 291.Google Scholar
18. Continenza, A.; Profeta, G.; Picozzi, S. Phys. Rev. B 2006, 73, 035212.10.1103/PhysRevB.73.035212Google Scholar
19. Grabis, J.; Bergmann, A.; Nefedov, A.; Westerholt, K.; Zabel, H. Phys. Rev. B 2005, 72, 022437.Google Scholar
20. Miyamoto, K.; Iori, K.; Kimura, A.; Xie, T.; Taniguchi, M.; Qiao, S.; Tschiya, K. Solid State Comm. 2003, 128, 163.10.1016/j.ssc.2003.08.007Google Scholar
21.(a)Liou, Y.; Su, P. W.; Shen, Y. L. Appl. Phys. Lett. 2007, 90, 182508. (b) Liou, Y.; Lee, M. S.; You, K. L. Appl. Phys. Lett. 2007, 91, 082505.10.1063/1.2737372Google Scholar