Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T02:39:47.075Z Has data issue: false hasContentIssue false

Ferroelectricity, ferromagnetism, and magnetoelectric coupling in highly textured thin films of the multiferroic Pb(Fe0.5Nb0.5)O3

Published online by Cambridge University Press:  11 October 2012

Oscar Raymond-Herrera
Affiliation:
Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), AP 14, Ensenada 22860, BC, México.
Paola Góngora-Lugo
Affiliation:
Posgrado en Ciencia e Ingeniería de Materiales, CNyN, UNAM, Ensenada 22860, BC, México.
Carlos Ostos
Affiliation:
Instituto de Química, Universidad de Antioquia, Medellín, Colombia.
Mario Curiel-Alvarez
Affiliation:
Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), AP 14, Ensenada 22860, BC, México.
Dario Bueno-Baques
Affiliation:
Centro de Investigación en Química Aplicada, Saltillo 25253, Coahuila, México.
Roberto Machorro-Mejia
Affiliation:
Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), AP 14, Ensenada 22860, BC, México.
Lourdes Mestres-Vila
Affiliation:
Facultat de Química, Universitat de Barcelona, Av. Diagonal 648, 08028, Barcelona, España.
Reynaldo Font-Hernández
Affiliation:
Facultad de Física, Universidad de La Habana, San Lázaro y L, 10400, La Habana, Cuba.
Jorge Portelles-Rodriguez
Affiliation:
Facultad de Física, Universidad de La Habana, San Lázaro y L, 10400, La Habana, Cuba.
Jesús M. Siqueiros
Affiliation:
Facultad de Física, Universidad de La Habana, San Lázaro y L, 10400, La Habana, Cuba.
Get access

Abstract

A study of the ferroelectric and magnetic properties and of the magnetoelectric coupling effects of Pb(Fe0.5Nb0.5)O3 (PFN) thin films, grown on SrRuO3/Si [(100) or (111)] substrates by the rf-magnetron sputtering technique, is presented. Structural, morphological, and compositional characterization was realized using the XRD, AFM, XPS, and TEM techniques. Highly textured single phase films with different thickness (from 45 to 270 nm) were successfully grown without Fe2+ presence. A vertically [110] oriented grainy structure was observed. Polarization vs. electric field (P-E) hysteresis loops exhibit excellent and almost constant values of the maximum (∼ 60 μC/cm2) and remanent (∼ 22 μC/cm2) polarizations in the temperature range from 4 K to room temperature; small values of the coercive field, characteristic of soft ferroelectric materials, are observed in these samples. Measurements of the zero-field cooled (ZFC) and field cooled (FC) magnetization behavior and magnetic (M-H) hysteresis loops were realized at different temperatures between 5 and 300 K. Proof of the existence of ferromagnetic order in the low temperature region (below to 50 K) is discussed and reported for the first time. Values of the maximum (∼ 3 emu/g) and remanent (∼ 1.5 emu/g) magnetizations were obtained. dc magnetic field dependence of the ferroelectric hysteresis loops are shown as evidence of the magnetoelectric coupling.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, K. F., Liu, J. -M., Ren, Z. F., Advances in Physics 58, 4, 321 (2009).CrossRefGoogle Scholar
Raymond, O., Font, R., Portelles, J., and Siqueiros, J. M., J. Appl. Phys. 109, 084107 (2011).CrossRefGoogle Scholar
Yan, L., Zhao, X., Li, J., and Viehland, D., Appl. Phys. Lett., 94, 192903 (2009).CrossRefGoogle Scholar
Peng, W., Lemée, N., Karkut, M., Dkhil, B., Shvartsman, V. V., Borisov, P., Kleemann, W., Holc, J., Kosec, M., and Blinc, R., Appl. Phys. Lett., 94, 012509 (2009).CrossRefGoogle Scholar
Correa, M., Kumar, A., Katiyar, R. S., and Rinaldi, C., Appl. Phys. Lett., 93, 192907 (2008).Google Scholar
Yan, L., Li, J., and Viehland, D., J. Appl. Phys., 101, 104107 (2007).CrossRefGoogle Scholar
Yan, L., Li, J., Suchicital, C., and Viehland, D., Appl. Phys. Lett., 89, 132913 (2006).CrossRefGoogle Scholar
Gao, X. S., Chen, X. Y., Yin, J., Wu, J., Liu, Z. G., Wang, M., J. Mat. Sci., 35, 5421 (2000).CrossRefGoogle Scholar
Liu, Q., Yi, G.H., Barber, D.J., Mat. Lett., 38, 239 (1999).CrossRefGoogle Scholar
Joy, P. A., Anil Kumar, P. S., and Date, S. K., J. Phys.: Condens. Matter, 10, 11049 (1998).Google Scholar
Anil Kumar, P. S., Joy, P. A., Date, S. K., Physica B, 269, 356 (1999).CrossRefGoogle Scholar