Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T12:11:44.193Z Has data issue: false hasContentIssue false

Ferroelectric Properties of SBT (Sr/Bi/Ta = 0.8/2.3/2) Thin Films Using a Novel Chemical Solution Deposition

Published online by Cambridge University Press:  10 February 2011

Seung-Hyun Kim
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695
D.J. Kim
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695
S.K. Streiffer
Affiliation:
Materíals Science Division, Argonne National Laboratory, Argonne, IL 60439
J-P. Maria
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695
Angus I. Kingon
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695
Get access

Abstract

A new chemical route using an alkanolamine chelating agent for synthesis of ferroelectric Sro0.8Bi2.3Ta2O9 (SBT) thin films is investigated. The addition of alkanolamine provided stability to the SBT solution by retarding the hydrolysis and condensation rates. This solution could be stored for 30 days without any appreciable change of the properties. The crystallinity and the microstructure of the SBT thin films improved with increasing annealing temperature, and strongly influenced the ferroelectric properties. This alkanolamine modified films annealed at 800 °C exhibited low voltage saturation, high remanent polarization and resistance to fatigue after 1010 switching cycles. These electrical properties are favorable for non-volatile memory applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chung, I.S., Lee, J.K., Lee, W.I., Chung, C.W., and Desu, S.B. in Ferroelectric Thin Films, edited by Tuttle, B.A., Desu, S.B., Ramesh, R., and Shiosaki, T. (Mat. Res. Soc. Symp. Proc. 361, Boston, 1995), p. 249.Google Scholar
2. Kim, S.H., Hong, J.G., Gunter, J.C., Lee, H.Y., Streiffer, S.K., and Kingon, A.I. in Ferroelectric Thin Films, edited by Treece, R.E., Jones, R.E., Foster, C.M., Desu, S.B., Yoo, I.K. (Mat. Res. Soc. Symp. Proc. 493, Boston, 1998), p. 131.Google Scholar
3. Mihara, T., Watanabe, H., and Araujo, C.A. Paz de, Jpn. J. Appl. Phys. 33, 528 (1994).Google Scholar
4. Amanuma, K., Hase, T., and Miyasaka, Y., Appl. Phys. Lett. 66, 222 (1995).Google Scholar
5. Araujo, C.A. Paz de, Cuchiaro, J.D., Mcmillan, L.D., Scott, M.C., and Scott, J.F., Nature, 374, 627 (1995).Google Scholar
6. Ito, Y., Ushikubo, M., Yokoyama, S., Atsuki, T., Yonezawa, T., and Ogi, K., Integrated Ferroelectrics 14, 123 (1997).Google Scholar
7. Boyle, T.J., Buchheit, C.D., Rodriguez, M.A., Al-Shareef, H.N., Scott, B., and Ziller, J.W., J. Mater. Res. 11 (9), 1 (1996).Google Scholar
8. Kim, S.H., Choi, Y.S., Kim, C.E., and Oh, Y.J., J. Mater. Res. 12 (6), 1576 (1997).Google Scholar
9. Kim, S.H., Kim, C.E., and Oh, Y.J., J. Mater. Sci. 30, 5639 (1995).Google Scholar
10. Kim, S.H., Kim, D.J., Lee, K.M., Park, M., Kingon, A.I., Nemanich, R.J., Im, J., and Streiffer, S.K., submitted to J. of Materials Research (1998).Google Scholar
11. Sanchez, C., Livage, J., Henry, M., and Babonneau, F., J. Non-cryst. Solids 100, 65 (1988).Google Scholar
12. Yi, G., and Sayer, M., Ceram. Bull. 70, 1175 (1991).Google Scholar