Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:38:08.351Z Has data issue: false hasContentIssue false

Ferro- and piezoelectric properties of Bi4−xPrxTi3O12 polycrystalline thick films with Ps-vector orientation

Published online by Cambridge University Press:  01 February 2011

Hirofumi Matsuda
Affiliation:
Smart Structure Research Center, National Institute of Advanced Industrial Science and Technology, 1–1–1 Umezono, Tsukuba, Ibaraki 305–8568, Japan
Sachiko Ito
Affiliation:
Smart Structure Research Center, National Institute of Advanced Industrial Science and Technology, 1–1–1 Umezono, Tsukuba, Ibaraki 305–8568, Japan
Takashi Iijima
Affiliation:
Smart Structure Research Center, National Institute of Advanced Industrial Science and Technology, 1–1–1 Umezono, Tsukuba, Ibaraki 305–8568, Japan
Get access

Abstract

To reveal the complete performance of intrinsic ferroelectriciy-related properties in single crystalline bismuth-layer-structured displacive ferroelectrics in film form on Si, the crucial roles of both orientation control technology by lattice matching from the atomic arrangement of substrate layer and configuration of the volume fraction of 90°-domain during cooling process were demonstrated. 1.2 μm-thick and Pr3+-substituted Bi4-xPrxTi3O12 (BPT, x =0.0, 0.3, 0.5, 0.7) films were grown on Ir(111)/Ti/SiO2/Si(001) substrates by chemical solution deposition (CSD) method with preferred orientation along the major component of Ps vector. BPT film of x =0.3 exhibited superb ferroelectric properties of remanent polarization 2Pr=92 μC/cm2, saturation polarization Psat=50 μC/cm2, and coercive field 2Ec=184 kV/cm. The film also showed uniform piezoelectric response with an effective piezoelectric coefficient of AFM-d33=36 pm/V. During the decomposition of precursor solutions, IrO2 layers were formed at the surface of Ir layers and promoted a/b-axes orientation. During the cooling process after grain growth, in addition, the differential thermal expansion and residual strain between film and substrate introduced bidirectional lateral stress into BPT film and might eliminate the 90°-domain walls dividing a-and b-domains through the relaxation by domain formation at the Curie temperature TC. Consequently the polar-axis orientation was distinctively grown along the film normal and the conjugate non-polar-axis was grown in-plane.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Park, B. H., Kang, B. S., Bu, S. D., Noh, T. W., Lee, J., and Jo, W., Nature (London) 401, 682 (1999).Google Scholar
2. Auciello, O., Scott, J. F., and Ramesh, R., Phys. Today July, 2227 (1998).Google Scholar
3. Aurivillius, B., Ark. Kemi., 1, 463 (1949).Google Scholar
4. Aurivillius, B., Ark. Kemi., 2, 519 (1950).Google Scholar
5. Rae, A. D., Thompson, J. G., Withers, R. L., and Willis, A. C., Acta Crystallogr. Sect. B 46 474 (1990).Google Scholar
6. Cummins, S. E. and Cross, L. E., J. Appl. Phys. 39, 2268 (1968).Google Scholar
7. Lee, H. N., Hesse, D., Zakharov, N., and Goesele, U., Science 296, 2006 (2002).Google Scholar
8. Watanabe, T., Funakubo, H., Saito, K., Suzuki, T., Fujimoto, M., Osada, M., Noguchi, Y., and Miyayama, M., Appl. Phys. Lett. 81, 1660 (2002).Google Scholar
9. Lee, H. N. and Hesse, D., Appl. Phys. Lett. 80, 1040 (2002).Google Scholar
10. Ramesh, R. and Schlom, D. G., Science 296, 1975 (2002).Google Scholar
11. Garg, A., Barber, Z. H., Dawber, M., and Scott, J. F., Appl. Phys. Lett., 83, 2414 (2003).Google Scholar
12. Sun, Y. M., Chen, Y. C., Gan, J. Y., and Hwang, J. C., Appl. Phys. Lett. 81, 3221 (2002).Google Scholar
13. Takenaka, T. and Sakata, K., Ferroelectrics 38, 769 (1981).Google Scholar
14. Matsuda, H., Ito, S., and Iijima, T., Jpn. J. Appl. Phys. 42 5977 (2003).Google Scholar
15. Shannon, R. D. and Prewitt, C. T., Acta Cryst. Sect. B 26, 1046 (1970).Google Scholar
16. Nagarajan, V., Roytburd, A., Stanishevsky, A., Prasertchoung, S., Zhao, T., Chen, L., Melngilis, J., Auciello, O., and Ramesh, R., Nature Materials, 2, 43 (2003).Google Scholar
17. Migoni, R., Bilz, H., and Baeurle, D., Phys. Rev. Lett. 37, 1155 (1976).Google Scholar
18. Uwe, H. and Sakudo, T., Phys. Rev. B 13, 271 (1976).Google Scholar
19. Speck, J. S., Seifert, A., Pompe, W., and Ramesh, R., J. Appl. Phys., 76, 477 (1994).Google Scholar
20. Zurbuchen, M. A., Asayama, G., Schlom, D. G., Streiffer, S. K., Phys. Rev. Lett. 88, 107601 (2002).Google Scholar
21. Shimakawa, Y., Kubo, Y., Tauchi, Y., Asano, H., Kamiyama, T., Izumi, F., and Hiroi, Z., Appl. Phys. Lett. 79, 2791 (2001).Google Scholar
22. Subbrao, E. C., I. R. E. Trans. Electron. Devices, E. D. 8 422 (1961).Google Scholar
23. Matsuda, H., Ito, S., and Iijima, T., Appl. Phys. Lett. 83, 5023 (2003).Google Scholar
24. Maiwa, H., Iizawa, N., Togawa, D., Hayashi, T., Sakamoto, W., Yamada, M., and Hirano, S., Appl. Phys. Lett. 82, 1760 (2003).Google Scholar