Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:39:35.118Z Has data issue: false hasContentIssue false

Ferrites for Tunable RF and Microwave Devices

Published online by Cambridge University Press:  10 February 2011

Gerald F. Dionne*
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood St., Lexington, MA 02420, [email protected]
Get access

Abstract

Microwave systems for communications and radar require control of propagation of the rf signal. Devices that accomplish this function include phase shifters, isolators and circulators, and tunable filters. In many instances, these devices are magnetic and are based on the variable permeability of electrically insulating ferrimagnetic oxides (ferrites). Recent advances in microwave ferrite devices have featured superconductor circuitry that promises to virtually eliminate insertion losses due to rf surface resistance. Lower conduction losses allow the use of small lightweight microstrip configurations in place of traditional bulky waveguide structures. For operation at cryogenic temperatures ferrimagnetic spinels and garnets will require chemical alteration to realize the full potential of these devices. Challenges include the reduction of magnetocrystalline anisotropy to optimize switching energies and speeds, and the elimination of fast-relaxing impurities in the magnetic garnets that can increase magnetic losses and degrade resonator Q factors at low temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dionne, G.F., Oates, D.E., Temme, D.H., and Weiss, J.A., IEEE Trans. Microwave Theory Tech. 44, 1361 (1996).10.1109/22.508241Google Scholar
2. Oates, D.E. and Dionne, G.F., 1997 IEEE MTT-S Digest, p. 303.Google Scholar
3. Lax, B. and Button, K.J., Microwave Ferrites and Ferrimagnetics (McGraw-Hill Book Co, New York, 1962), Chapter 4.Google Scholar
4. Dionne, G.F. and Oates, D.E., IEEE Trans. Magn. 33, 3421 (1997).10.1109/20.617964Google Scholar
5. Pucell, R.A. and Masse, D.J., IEEE Trans. Microwave Theory Tech. 20, 304 (1972).10.1109/TMTT.1972.1127749Google Scholar
6. Dionne, G.F. and Oates, D.E., J. Appl. Phys. 85, 4856 (1999).10.1063/1.370044Google Scholar
7. Dionne, G.F., J. Phys. IV France 7, C1437 (1997).10.1051/jp4:19971177Google Scholar
8. Dionne, G.F., J. Appl. Phys. 81, 5064 (1997).10.1063/1.364509Google Scholar
9. Néel, L., Ann. Phys. (Paris) 3, 137 (1948).Google Scholar
10. Dionne, G.F., J. Appl. Phys. 41, 4874 (1970).10.1063/1.1658555Google Scholar
11. Dionne, G.F., J. Appl. Phys. 45, 3621 (1974).10.1063/1.1663827Google Scholar
12. Dionne, G.F. and Tumelty, P.F., J. Appl. Phys. 50, 8257 (1979).10.1063/1.325931Google Scholar
13. Dionne, G.F., J. Appl. Phys. 63, 3777 (1988).10.1063/1.340637Google Scholar
14. Gilleo, M.A., J. Phys. Chem. Solids 13, 33 (1960).10.1016/0022-3697(60)90124-4Google Scholar
15. Borghese, C., J. Phys. Chem. Solids 28, 2225 (1967).10.1016/0022-3697(67)90248-XGoogle Scholar
16. Nowik, I., J. Appl. Phys. 40, 5184 (1969).10.1063/1.1657372Google Scholar
17. Rosencwaig, A., Can. J. Phys. 48, 2868 (1970).10.1139/p70-357Google Scholar
18. Vleck, J.H. Van and Penney, W.G., Philos. Mag. 17, 961 (1934).10.1080/14786443409462449Google Scholar
19. Yosida, K. and Tachiki, M., Prog. Theor. Phys. 17, 331 (1957).10.1143/PTP.17.331Google Scholar
20. Dionne, G.F., J. Appl. Phys. 40, 1839 (1969).10.1063/1.1657855Google Scholar
21. Anderson, E.E., Phys. Rev. 134, A1581 (1964).10.1103/PhysRev.134.A1581Google Scholar
22. Rodrigue, G.P., Meyer, H., and Jones, R.V., J. Appl. Phys. 31, 376S (1960).10.1063/1.1984756Google Scholar
23. Craik, D.J. and Tebble, R.S., Ferromagnetism and Ferromagnetic Domains, (John Wiley, New York, 1965), Chapter 2.Google Scholar
24. Menyuk, N. and Goodenough, J.B., J. Appl. Phys. 26, 8 (1955).10.1063/1.1721867Google Scholar
25. Standley, K.J. and Vaughn, R.A., Electron Spin Relaxation Phenomena in Solids, (Plenum Press, New York, 1969), p. 5.10.1007/978-1-4899-6539-4Google Scholar
26. Orbach, R., Proc. R. Soc. A264, 458 (1961).Google Scholar
27. Seiden, P.E., Phys. Rev. 133, A728 (1964).10.1103/PhysRev.133.A728Google Scholar
28. Dionne, G.F. and Fitch, G.L., paper AT-01 at 1999 Magnetism & Magn. Matls. Conf., J. Appl. Phys. 86 (2000), in press.Google Scholar