Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T10:39:57.904Z Has data issue: false hasContentIssue false

Ferrite Properties and Technology Issues for Improved Microwave Systems

Published online by Cambridge University Press:  01 February 2011

Gerald F. Dionne
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, MA 02420, U.S.A.
Daniel E. Oates
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, MA 02420, U.S.A.
Get access

Abstract

Microwave device engineers continually seek materials advances to improve performance of magnetic components at reduced size and cost. Wherever possible, microstrip or stripline device configurations are adopted in preference to bulky waveguide structures. In radar and communications applications, the nonreciprocal propagation properties of ferrites are essential for realizing phase shifters, circulators, isolators, and power limiters. The introduction of superconductor circuits has led to the development of very low-loss phase shifters and circulators. Recent demonstrations of tuning reciprocal rf permeability by varying the state of magnetization at very low magnetic fields has led to the development of high-speed, high-Q tunable filters. In this paper, design issues of four classes of microwave device are reviewed from the standpoint of their ferrite material requirements: (1) low-loss microstrip phase shifters (2) microstrip tunable resonators, (3) self-biased microstrip circulators with normal or in-plane uniaxial anisotropy, and (4) high-power quasi-optical circulators.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Adam, J.D., Davis, L.E., Dionne, G.F., Schloemann, E.F., Stitzer, S.N., IEEE Trans. Microwave Th. & Tech. 50, 721 (2002).Google Scholar
2. Buhay, H., Adam, J.D., Daniel, M.R., Doyle, N.J., Driver, M.C., Elridge, G.W., Hanes, M.H., Messham, R.L., and Sopra, M.M., IEEE Trans. Magn. 31, 3832 (1995).Google Scholar
3. Dionne, G.F., Oates, D.E., and Temme, D.H., IEEE Trans. Magn. 30, 4518 (1994).Google Scholar
4. Dionne, G.F., Oates, D.E, Temme, D.H., and Weiss, J.A., IEEE Trans. Microwave Th. & Tech. 44, 1361 (1996).Google Scholar
5. Jia, Q.X., Findikoglu, A.T., Arendt, P., Foltyn, S.R., Roper, J.M., Groves, J.R., Coulter, J.Y., Li, Y.Q., and Dionne, G.F., Appl. Phys. Lett. 72, 1763 (1998).Google Scholar
6. Weiss, J.A., Dionne, G.F., and Temme, D.H., IEEE Trans. Microwave Th. & Tech. 42, 2743 (1995).Google Scholar
7. Dionne, G.F. and Oates, D.E., IEEE Trans. Magn. 33, 3421 (1997).Google Scholar
8. Oates, D.E. and Dionne, G.F., IEEE Trans. Appl. Supercond. 9, 4170 (1999).Google Scholar
9. Dionne, G.F. and Oates, D.E., 9th Joint MMM/Intermag Conf. Digest 2004, p. 35.Google Scholar
10. Dionne, G.F., J. Appl. Phys. 81, 5064 (1997).Google Scholar
11. Weiss, J.A., Watson, N.G., and Dionne, G.F., 1989 IEEE MTT-S Intl. Microwave Symp. Digest, p. 145; also Applied Microwave, Fall 1990, p. 74.Google Scholar
12. Dionne, G.F. and Fitzgerald, J.F., J. Appl. Phys. 70, 6140 (1991).Google Scholar
13. De Bitteto, D.J., J. Appl. Phys. 35, 3482 (1964).Google Scholar
14. Oliver, S., Yoon, S.D., Kozulin, I., Shi, P., Zuo, X., and Vittoria, C., Proc. Mater. Res. Soc. 603, 101 (2000).Google Scholar
15. Dionne, G.F., Weiss, J.A., and Allen, G.A., IEEE Trans. Magn. 24, 2817 (1988).Google Scholar
16. Fitzgerald, W.D., Lincoln Laboratory Journal 5, 245 (1992).Google Scholar
17. Schloemann, E., Milano, U., and Green, J.J., J. Appl. Phys. 31, 386S (1960).Google Scholar
18. Lax, B., Weiss, J.A., Harris, N.W., and Dionne, G.F., IEEE Trans. Microwave Th. & Tech. 41, 2190 (1994).Google Scholar
19. Webb, M.R., Int'l J. IR and mm Waves 12, 45 (1991).Google Scholar