Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:18:26.793Z Has data issue: false hasContentIssue false

Fermi-Level Effect on Group III Atom Interdiffusion in III-V Compounds: Bandgap Heterogeneity and Low Silicon-Doping

Published online by Cambridge University Press:  10 February 2011

C.-H. Chen
Affiliation:
Department of Mechanical Engineering and Material Science, Duke University Durham, NC 27708–0300
U. Gösele
Affiliation:
Department of Mechanical Engineering and Material Science, Duke University Durham, NC 27708–0300
T. Y. Tan
Affiliation:
Department of Mechanical Engineering and Material Science, Duke University Durham, NC 27708–0300
Get access

Abstract

Heavy n-doping enhanced disordering of GaAs based III-V semiconductor superlattice or quantum well layers, as well as the diffusion of Si in GaAs have been previously explained by the Fermi-level effect model with the triply-negatively-charged group III lattice vacancies identified to be the responsible point defect species. These vacancies have a thermal equilibrium concentration proportional to the cubic power of the electron concentration n, leading to the same dependence of the layer disordering rate. In this paper, in addition, we take into account also the electric field effect produced by the material bandgap heterogeneity and/or hetero-junctions. In heavily n-doped or long time annealing cases, this effect is negligible. At low n-doping levels and for short annealing times, the layer disordering rate can be enhanced or reduced by this effect. Available experimental results of low Si-doped and very short-time annealed samples have been satisfactorily fitted using the Fermi-level effect model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chang, L. L. and Koma, A., Appl. Phys. Lett. 29, 138 (1976).Google Scholar
2. Laidig, W. D., Holonyak, N. Jr, Camras, M. D., Hess, K., Colman, J. J., Dapkus, P. D., and Bardeen, J., Appl. Phys. Lett. 38, 776 (1981).Google Scholar
3. Deppe, D. G. and Holonyak, N. Jr, J. Appl. Phys. 66, R93 (1988).Google Scholar
4. Tan, T. Y. and Gösele, U., Cri. Rev. Sol. Stat. Mater. Sci. 17, 47 (1991).Google Scholar
5. Mei, P., Yoon, H. W., Venkatesan, T., Schwarz, S. A., and Harbison, J. P., Appl. Phys. Lett. 50, 1823 (1987).Google Scholar
6. Deppe, D. G., Holonyak, N. Jr, Hsieh, K. C., Gravrilovic, P., Stuitius, W., and Williams, J., Appl. Phys. Lett. 51, 581 (1987).Google Scholar
7. Tan, T. Y. and Gösele, U., Appl. Phys. Lett. 52, 1240 (1988).Google Scholar
8. Yu, S., Gösele, U., and Tan, T. Y., J. Appl. Phys. 66, 2952 (1989).Google Scholar
9. Yu, H.-M., Gösele, U., and Tan, T. Y., J. Appl. Phys. 73, 7207 (1993).Google Scholar
10. Tan, T. Y. and Gösele, U., Mater. Chem. Phys. 44, 45 (1995).Google Scholar
11. Jafri, Z. H. and Gillin, W. P., J. Appl. Phys. 81, 2179 (1997).Google Scholar
12. Tan, T. Y., You, H.-M., Yu, S., Gösele, U. M., Jager, W., Boeringer, D. W., Zypman, F., Tsu, R., and Lee, S.-T., J. Appl. Phys. 72, 5206 (1992).Google Scholar
13. Olmsted, B. L., Houde-Walter, S. N., and Viturro, R. E., in Advanced III-V Compound Semiconductor Growth, Processing and Devices, eds. Pearton, S. J., Sadana, D. K., and Zawada, J. M., Mater. Res. Soc. Proc. vol. 240 (Mater. Res. Soc, Pittsburgh, PA, 1992) p. 721.Google Scholar
14. Jüngling, W., Pichler, P., Selberherr, S., Guerrero, E., and Pötzl, H. W., IEEE Trans. Electron. Devices ED-32, 156 (1985).Google Scholar
15. You, H.-M., Gösele, U. M., and Tan, T. Y., J. Appl. Phys. 74, 2461 (1993).Google Scholar
16. Joncour, M. C, Charasse, M. N., and Burgeat, J., J. Appl. Phys. 58, 3373 (1985).Google Scholar
17. Gillin, W. P., Bradley, I. V., Gwilliam, R., and Homewood, K. P., J. Appl. Phys. 73, 7715 (1993).Google Scholar