Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-16T19:37:04.187Z Has data issue: false hasContentIssue false

Fermi Surface in La2CuO4-σ Determine by Positron 2D-ACAR

Published online by Cambridge University Press:  28 February 2011

Shoichiro Tanigawa
Affiliation:
Institute of Materials Science, University of Tsukuba, Sakura-mura, Ibaraki 305, Japan
Yoji Mizuhara
Affiliation:
Institute of Materials Science, University of Tsukuba, Sakura-mura, Ibaraki 305, Japan
Yoshikazu Hidaka
Affiliation:
NTT Electrical Communications Laboratories, 162 Tokai, Ibaraki 319–11, Japan
Migaku Oda
Affiliation:
NTT Electrical Communications Laboratories, 162 Tokai, Ibaraki 319–11, Japan
Minoru Suzuki
Affiliation:
NTT Electrical Communications Laboratories, 162 Tokai, Ibaraki 319–11, Japan
Toshiaki Murakami
Affiliation:
NTT Electrical Communications Laboratories, 162 Tokai, Ibaraki 319–11, Japan
Get access

Abstract

The topology of the Fermi surface in La2CuO4-σ is determined by two dimensional angular correlation measurements of annihilation radiations (2D-ACAR) at room temperature. The determined Fermi surface is two dimensional and has a slender electron pillar along ΓZ and two kinds of hole pillars along PX and along NN direction parallel to ΓZ, respectively, in the Bradley and Cracknell notation modified by Yu, Freeman and Xu. It is concluded that the Fermi surface is not a simple half filled one and this compound should be metallic at least at room temperature in the band picture.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bednorz, J. G. and Muller, K. A., Z. Phys. B64, 189 (1986).Google Scholar
2. Uchida, S., Takagi, H., Kitazawa, K. and Tanaka, S., Jpn. J. Appl. Phys. 26, L1 (1987).Google Scholar
3. Takagi, H., Uchida, S., Kitazawa, K. and Tanaka, S., Jpn. J. Appl. Phys. 26, L123 (1987).Google Scholar
4. Uchida, S., Takagi, H., Ishij, H., Eisaki, H., Yabe, T., Tajima, S. and Tanaka, S., Jpn. J. Appl. Phys. 26, L440 (1987).Google Scholar
5. Uchida, S., Takagi, H., Yanagisawa, H., Kishio, K., Kitazawa, K., Fueki, K. and Tanaka, S., Jnn. J. Appl. Phys. 26, L445 (1987).Google Scholar
6. Mattheiss, L. F., Phys. Rev. Lett. 58, 1028 (1987).Google Scholar
7. Yu, J., Freeman, A. J., and Xu, J. H., Phys. Rev. Lett. 58, 1035 (1987).Google Scholar
8. Takegahara, K., Harima, H. and Yanase, A., Jpn. J. Appl. Phys. 26, L352 (1987).Google Scholar
9. Fujiwara, T. and Hatsugai, Y., Jpn. J. Appl. Phys. 26, L716 (1987).Google Scholar
10. Tanigawa, S., Mater. Sci. Forum (in press).Google Scholar
11. Hidaka, Y., Enomoto, Y., Suzuki, M., Oda, M. and Murakami, T., J. Cryst Growth (in press).Google Scholar
12. Berko, S., Positron Solid-State Physics (1983) 64.Google Scholar
13. Lock, D.G., Crisp, V.H.C. and West, R.N., J. Phys. F 3, 561 (1973).Google Scholar