Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:22:15.587Z Has data issue: false hasContentIssue false

Femtosecond Pump-probe studies of Carrier Dynamics in the Normal State of the Unconventional Superconductor Sr2RuO4

Published online by Cambridge University Press:  01 February 2011

P. Guptasarma
Affiliation:
Physics Department, University of Wisconsin, Milwaukee, WI
S. L. Sendelbach
Affiliation:
Physics Department, University of Wisconsin, Madison, WI
M. L. Schneider
Affiliation:
Physics Department, University of Wisconsin, Madison, WI
M. S. Williamsen
Affiliation:
Physics Department, University of Wisconsin, Milwaukee, WI
G. Taft
Affiliation:
Physics Department, University of Wisconsin, Stevens Point, WI 53706
A. Souslov
Affiliation:
Physics Department, University of Wisconsin, Milwaukee, WI National High Magnetic Field Laboratory, Tallahassee, FL 32310
M. Onellion
Affiliation:
Physics Department, University of Wisconsin, Madison, WI
Get access

Abstract

The microscopic origin of unconventional superconductivity1 is one of the most fascinating questions2–3 in condensed matter physics. In recent years, important questions have been raised about the nature of the normal (metallic, non-superconducting) state above the superconducting critical transition temperature (Tc). In fact, it is now generally agreed4,5 that a better understanding of the nature of the normal state is crucial to our understanding of the microscopic origin of the superconducting state.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Broadly, unconventional superconductors are those that break symmetries (such as parity and time reversal symmetry) in addition to the usual broken gauge symmetry.Google Scholar
2. Anderson, P.W.: Basic Notions of Condensed Matter Physics”, Westview Press, Perseus (1997);Google Scholar
Schrieffer, J.R.: “Theory of Superconductivity”, Perseus Books (1999).Google Scholar
3. See, e.g., Orenstein, J. and Millis, A.J., Science 288, 468 (2000);Google Scholar
Feng, D.L., et al, Science 289, 277 (2000); and refs therein.Google Scholar
4. Timusk, T and Statt, B, Rep. Prog. Phys. 62 61122 (1999); and refs therein;Google Scholar
Kaminski, A., et al, Phys. Rev. B 71, 014517 (2005);Google Scholar
Campuzano, J. C., et al, Phys. Rev. Lett. 83, 37093712 (1999);Google Scholar
Norman, M.R. et al, Nature 392, 157 (1998).Google Scholar
5. See, e.g, Batlogg, B. and Varma, CM, Physics World, 13 (2), Art. 8, February (2000);Google Scholar
Capone, M., et al, Science 296, 2364 (2002); M Randeria, cond-mat/9710223 (1997);Google Scholar
6. See Mackenzie, A.P. and Maeno, Y., Rev. Mod. Phys. 75, 657 (2003); and refs therein. Google Scholar
7. Riseman, T.M. et al, Nature (London) 396, 242 (1998).Google Scholar
8. Ishida, K. et al, Phys. Rev. B 64, 100501 (2001); Nature (London) 396, 658 (1998).Google Scholar
9. Luke, G.M. et al, Nature (London) 394, 558 (1998).Google Scholar
10. Rice, T.M. and Sigrist, M., J. Phys. Cond. Matt. 7, L643 (1995).Google Scholar
11. Braden, M., et al, Phys. Rev. Lett. 92, 097402 (2004)Google Scholar
12. Deguchi, K., K, , et al, J. Phys Soc Japan 73, 1313 (2004); and refs therein. Google Scholar
13. Cao et al, Phys. Rev. B 61, R5053 (2000); and refs therein. Google Scholar
14. Nakatsuji, and Maeno, , Phys. Rev. Lett. 84, 2666 (2000); and refs therein. Google Scholar
15. Balicas, L., et al, Physica B 346, 344 (2004); and refs therein.Google Scholar
16. M, Matsumoto et al, J. Phys. Soc. Japan 72, 1623 (2003); and refs therein Google Scholar
17. Mackenzie, A.P. et al, Phys. Rev. Lett. 80, 161 (1998)Google Scholar
18. Mackenzie, A.P. et al, Phys. Rev. Lett. 80, 161 (1998)Google Scholar
19. Braden, M., et al, Phys. Rev. Lett. 92, 097402 (2004)Google Scholar
20. Manufactured by KMLabs, Inc., Boulder, COGoogle Scholar
21. Rast, S., et al, Europhys. Lett. 51, 103 (2000); and refs therein.Google Scholar
22. Stevens, C. J. et al, Phys. Rev. Lett. 78, 2212 (1997).Google Scholar
23. Sun, C. K., et al, Phys. Rev. B 48, 12365 (1993)Google Scholar
24. Groeneveld, R. H. M., et al, Phys. Rev. B 51, 11433 (1995).Google Scholar
25. Schneider, M. L., et al, Euro. J. Phys. B 36, 327 (2003); and refs therein.Google Scholar
26. Brorson, S.D. et al, Phys. Rev. Lett. 59 (1987) 1962;Google Scholar
Fann, W.S., et al, Phys. Rev. Lett. 68, 2834 (1992);Google Scholar
Groenveld, R.H.M., Phys. Rev. B 45, 5079 (1992);Google Scholar
Fann, W. S., et al, Phys. Rev. B 46, 13592 (1992);Google Scholar
Sun, C.K et al, Phys. Rev. B 48, 12365 (1993);Google Scholar
Sun, C.K. et al, Phys. Rev. B 50, 15337 (1994).Google Scholar