Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T01:37:12.652Z Has data issue: false hasContentIssue false

Femtosecond Pulses as a New Photonic Source for Growing Thin Films by Pulsed-laser Deposition

Published online by Cambridge University Press:  15 February 2011

Eric Millon
Affiliation:
GPS, CNRS UMR7588, University Paris VI, 2 pl Jussieu, 75251 Paris Cedex 05, FRANCE LSMCL, University of Metz, Metz, FRANCE;
Jacques Perrière
Affiliation:
GPS, CNRS UMR7588, University Paris VI, 2 pl Jussieu, 75251 Paris Cedex 05, FRANCE
Olivier Albert
Affiliation:
LOA, CNRS UMR 7639 and ENSTA, Ecole Polytechnique, Palaiseau, FRANCE;
Jean Etchepare
Affiliation:
LOA, CNRS UMR 7639 and ENSTA, Ecole Polytechnique, Palaiseau, FRANCE;
Chantal Boulmer-Leborgne
Affiliation:
GREMI, CNRS UMR 6606, University ofOrléans, Orléans, FRANCE.
Get access

Abstract

The femtosecond (fs) lasers display noticeable specificities compared with the nanosecond (ns) ones operating in the UV domain, and classically used for the pulsed-laser deposition (PLD) technique. The ultra-short laser pulses offer the feature of minimal thermal damage induced in the target material, and the very high intensities (1012-14 W/cm2) available with fs lasers are likely to allow the ablation of any kind of materials, even the wide band gap insulators.

The morphology, structure, composition and properties of the films obtained by fs PLD are studied according to the experimental growth conditions, the nature of the target material, and the dynamic expansion of plasma plume. In the case of ZnO, smooth, dense and nanocrystalline films (10 to 30 nm crystallites) can be epitaxially grown on adequate substrates (i.e. sapphire). On the contrary, BaTiO3 films are formed by the random stacking of aggregates (10 to 200 nm) leading to a non negligible surface roughness,. In addition, the chemical composition of fs PLD thin films of multicomponent compound (i.e. BaTiO3) is not homogeneous, an enrichment in the lighter element being observed in the central part of the film. These properties are related to the phenomena taking place during the various steps of the process (laser-matter interaction, plasma formation, expansion) through time resolved emission spectroscopy and plume optical imaging measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

1. Chrisey, D.B. and Hubler, G.K., “Pulsed laser deposition of thin films”, Wiley, New-York (1994).Google Scholar
2. Guillot-Noel, O., Roman, R. Gomez-San, Perrière, J., Hermann, J., Craciun, V., Boulmer-Leborgne, C., and Barboux, P., J. Appl. Phys. 80, 1803 (1996)Google Scholar
3. Shirk, M.D., and Molian, P.A., J. Laser Applications 10, 18 (1998)Google Scholar
4. Zhang, Z., VanRompay, P.A., Nees, J.A., Clarke, R., Pan, X., and Pronko, P.P., Appl. Surf. Sci. 154-155, 165 (2000)Google Scholar
5. Okoshi, M., Higashikawa, K., and Hanabisa, M., Appl. Surf. Sci. 154-155, 424 (2000)Google Scholar
6. Dominguez, J.E., Pan, X.Q., Fu, L., Rompay, P.A. Van, Zhang, Z., Nees, J.A., and Pronko, P.P.: J. Appl. Phys. 91, 1060 (2002)Google Scholar
7. Banks, P.S., Dinh, L., Stuart, B.C., Feit, M.D., Komashko, A.M., Rubenchik, A.M., Perry, M.D. and McLean, W., Appl. Phys. A 69, S347 (1999)Google Scholar
8. Roy, D., and Krupanidhi, S.B., Appl. Phys. Lett. 61, 2057 (1992)Google Scholar
9. Li, C., Cui, D., Zhou, Y., Lu, H., Cheng, Z., Zhang, D., Wei, F., Appl. Surf. Sci. 136, 173 (1998)Google Scholar
10. Beckers, L., Schubert, J., Zander, W., Ziesmann, J., Eckau, A., Leinenbach, P., J. Appl. Phys. 83, 3305 (1998)Google Scholar
11. Srikant, V., Tarsa, E.J., Clarke, D.R., and Speck, J.S., J. Appl. Phys. 77, 1517 (1995)Google Scholar
12. Nashimoto, K., Fork, D.K., Ponce, F.A., Tramontana, J.C., Jpn. J. Appl. Phys. 32, 4099 (1993)Google Scholar
13. Craciun, V., Elders, J., Gardeniers, J.G.E., and Boyd, I.W., Appl. Phys.Lett. 65, 2963 (1994)Google Scholar
14. Choopun, S., Vispute, R.D., Noch, W., Balsamo, A., Sharma, R.P., Venkatesan, T., Illiadis, A., and Look, D.C., Appl. Phys. Lett. 75, 3947 (1999)Google Scholar
15. Millon, E., Albert, O., Loulergue, J.C., Etchepare, J., Hulin, D., Seiler, W., and Perrière, J., J. Appl. Phys. 88, 6937 (2000)Google Scholar
16. Craciun, V., Perrière, J., Bassim, N., Singh, R.K., Craciun, D. and Spear, J., Appl. Phys. A 69, S531 (1999)Google Scholar
17. Perrière, J., Millon, E., Seiler, W., Leborgne, C. Boulmer, Craciun, V., Albert, O., Loulergue, J.C., and Etchepare, J., J. Appl. Phys. 91, 690 (2002)Google Scholar
18. Im, S., Jin, B.J., and Yi, S., J. Appl. Phys. 87, 4558 (2000)Google Scholar
19. Gonzalo, J., Roman, R. Gomez San, Perrière, J., Afonso, C.N., and Casero, R. Perez, Appl. Phys. A 66, 487 (1998)Google Scholar
20. Siegert, M., Zander, W., Lisoni, J., Schubert, J. and Buchal, Ch., Appl. Phys. A 69, S779 (1999)Google Scholar
21. Albert, O., Roger, S., Glinec, Y., Loulergue, J.C., Etchepare, J., Boulmer-Leborgne, C., Perrière, J., and Millon, E.: Appl. Phys. A 76, 319 (2003)Google Scholar
22. Wang, R.P., Pan, S.H. and Zhou, Y.L., Solid State Comm. 114, 613 (2000)Google Scholar