Published online by Cambridge University Press: 01 February 2011
In copper CMP, transitions from copper to barrier as well as barrier to dielectric layer are typically sensed in situ using an optical reflectance technique. Spectroscopic techniques such as Raman, which allow monitoring the vibrational modes of silicon and low-k layers, have interesting potential for detecting these transitions. In this paper the use of Raman spectroscopy in detecting in situ removal of barrier layers from CDO materials is reported. Intensities of Raman peaks characteristic of Si-Si vibrations from Si substrate and C-H vibrations from low-k materials have been used for monitoring CDO layer thickness and detecting removal of Ta overlayer. An abrasion cell is integrated with a Raman spectrometer to demonstrate the feasibility of Raman monitoring in-situ. Capabilities and limitations of the Raman spectroscopic method are discussed.