Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T18:49:24.509Z Has data issue: false hasContentIssue false

FDTD Simulation of Light Propagation Inside a-Si:H Structures

Published online by Cambridge University Press:  01 February 2011

Alessandro Fantoni
Affiliation:
[email protected], ISEL, DEETC, Lisbon, Portugal
Pedro Pinho
Affiliation:
[email protected], ISEL, DEETC, Lisbon, Portugal
Get access

Abstract

We have developed a computer program based on the Finite Difference Time Domain (FDTD) algorithm able to simulate the propagation of electromagnetic waves with wavelengths in the range of the visible spectrum within a-Si:H p-i-n structures. Understanding of light transmission, reflection and propagation inside semiconductor structures is crucial for development of photovoltaic devices. Permitting 1D analysis of light propagation over time evolution, our software produces results in well agreement with experimental values of the absorption coefficient. It shows the light absorption process together with light reflection effects at the incident surface as well as at the semiconductor interfaces. While the effects of surface reflections are easily taken into account by the algorithm, light absorption represents a more critical point, because of its non-linear dependence from conductivity. Doping density, density of states and photoconductivity calculation are therefore crucial parameters for a correct description of the light absorption-transmission phenomena through a light propagation model.

The results presented in this paper demonstrate that is possible to describe the effect of the light-semiconductor interaction through the application of the FDTD model to a a-Si:H solar cell. A more general application of the model to 2D geometries will permit the analysis of the influence of surface and interface roughness on the device photovoltaic efficiency.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yee, K. S., IEEE Trans. Antennas Propagat. AP-14, 302, (1966).Google Scholar
2 Taflove, A. and Hagness, S. C., Computational Electrodynamics: The Finite Difference Time Domain Method, 3rd ed (Artech House, Boston 2005).Google Scholar
3 Sullivan, D.M., Electromagnetic Simulation Using the FDTD Method. (IEEE Press, New York 2000).Google Scholar
4 Yu, W., Mittra, R., Su, T., Liu, Y., Yang, X.. Parallel Finite-Difference Time-Domain Method. (Artech House, 2006).Google Scholar
5 Lauer, A., Wolff, I., Bahr, A., Pamp, J., and Kunisch, J., in Proceedings of the 45th IEEE Vehicular Technology Conference (Chicago, USA, 1995), 454458 Google Scholar
6 Rodriguez, G., Miyazaki, Y., Goto, N., IEEE Trans. Antennas Propagat. 54 (3), 785 (2006)Google Scholar
7 Bourgeois, J. M., Smith, G. S. IEEE Trans. Geosci. Remote Sensing. 34 (1), 36 (1996)Google Scholar
8 Oguz, U., Gurel, L., IEEE Trans. Geosci. Remote Sensing 40, 1385 (2002)Google Scholar
9 Sabouni, A., Noghanian, S., Pistorius, S., IEEE AP-S International Symposium, (New Mexico, USA, 2006).Google Scholar
10 El-Ghazaly, S. M., Joshi, R. P., Grondin, R. O., IEEE Trans. Microw. Theory Tech. 38 (5), 629 (1990).Google Scholar
11 Chang, S. H., Taflove, A., Opt. Express (12), 3827 (2004).Google Scholar
12 Pflaum, C., Haase, C., Stiebig, H., Jandl, C., 24th European Photovoltaic Solar Energy Conference, (Hamburg, Germany 2009) paper 3BO.9.6.Google Scholar
13 O'Brien, P., Kherani, N., Zukotynski, S., Ozin, G., Vekris, E., Tetreault, N., Chutinan, A., John, S., Mihi, A., and Míguez, H., Adv. Mater. 19, 4177 (2007).Google Scholar
14 Fantoni, A., Vieira, M., Martins, R.. Math. Comput. Simulat. 49, 381 (1999).Google Scholar
15 Luebbers, R. J., Hunsberger, F. P., Kunz, K. S., Standler, R. B., and Schneider, M., IEEE Trans. Electromag. Compat. 32 (3), 222 (1990).Google Scholar
16 Kelley, D. K. and Luebbers, R. J., IEEE Trans. Antennas Propag. 44 (6), 792 (1996)Google Scholar
17 Sullivan, D. M., IEEE Trans. Antennas Propag. 40 (10), 1223 (1992).Google Scholar
18 Joseph, R. M., Hagness, S. C., and Taflove, A., Optics Lett. 16, 1412 (1991).Google Scholar
19 Jellison, G.E. Jr, Modine, F.A., Appl.Phys.Lett. 69, 371 (1996).Google Scholar
20 Jellison, G.E. Jr, Modine, F.A., Appl. Phys. Lett. 69, 2137 (1996)Google Scholar
21 Ferlauto, A.S., Ferreira, G.M., Pearce, J.M., Wronski, C.R., Collins, R.W., Deng, X., Ganguly, G., Thin Solid Films 455–456, 388 (2004)Google Scholar