Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:14:02.240Z Has data issue: false hasContentIssue false

Fatigue-Crack Propagation in Gamma-Based Titanium Aluminide Alloys at Large and Small Crack Sizes

Published online by Cambridge University Press:  10 February 2011

J. J Kruzic
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, and Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720-1760
J. P Campbell
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, and Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720-1760
R. O. Ritchie
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, and Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720-1760
Get access

Abstract

Most evaluations of the fracture and fatigue-crack propagation properties of γ + α2 titanium aluminide alloys to date have been performed using standard "large-crack" samples, e.g., compact-tension specimens containing crack sizes which are on the order of tens of millimeters, i.e., large compared to microstructural dimensions. However, these alloys have been targeted for applications, such as blades in gas-turbine engines, where relevant crack sizes are much smaller (<500 µm) and where the small-crack fatigue threshold may be the most relevant design parameter. In this study, we compare and contrast the cyclic crack-growth behavior of both large (a > 5 mm) and small (c ∼ 25–300 µm) cracks in a γ-TiAl based alloy, of composition Ti-47A1–2Nb-2Cr-0.2B (at%), specifically for duplex (average grain size ∼17 µm) and refined lamellar (average colony size ∼150 µm) microstructures. It is found that, whereas the lamellar microstructure displays far superior fracture toughness and fatigue-crack growth resistance in the presence of large cracks, in small-crack testing the duplex microstructure exhibits a better combination of properties. The reasons for such contrasting behavior are examined in terms of the intrinsic and extrinsic (i.e., crack bridging) contributions to cyclic crack advance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kim, Y-W. and Dimiduk, D. M., JOM 43(8), 4047 (1991).CrossRefGoogle Scholar
2. Kim, Y-W., JOM 46(7), 3040 (1994).CrossRefGoogle Scholar
3. Harrison, G. F. and Winstone, M. R., in Mechanical Behavior of Materials at High Temperature, edited by Branco, C. Moura, Ritchie, R. O. and Sklenicka, V. (Kluwer Academic Publishers: NATO ASI Series, 1996), pp. 309325.CrossRefGoogle Scholar
4. Larsen, J. M., Worth, B. D., Balsone, S. J. and Jones, J. W., in Gamma Titanium Aluminides, edited by Kim, Y-W., Wagner, R. and Yamaguchi, M. (TMS, Warrendale, PA, 1995), pp. 821834.Google Scholar
5. Chan, K. S. and Kim, Y-W., Metall. Trans. 23A, 16631677 (1992).CrossRefGoogle Scholar
6. Chan, K. S., Metall. Trans. 24A, 569583 (1993).CrossRefGoogle Scholar
7. Chan, K. S. and Kim, Y-W., Metall. Trans. 24A, 113125 (1993).CrossRefGoogle Scholar
8. Rao, K. T. Venkateswara, Kim, Y-W., Muhlstein, C. L. and Ritchie, R. O., Mater. Sci. Eng. A 192, 474482 (1995).Google Scholar
9. Kumpfert, J., Kim, Y-W. and Dimiduk, D. M., Mater. Sci. Eng. A192/193, 465473 (1995).CrossRefGoogle Scholar
10. Balsone, S. J., Larsen, J. M., Maxwell, D. C. and Jones, J. W., Mater. Sci. Eng. A 192/193, 457464 (1995).CrossRefGoogle Scholar
11. Campbell, J. P., Rao, K. T. Venkateswara and Ritchie, R. O., Mater. Sci. Eng. A239–240, 722728 (1997).CrossRefGoogle Scholar
12. Campbell, J. P., Rao, K. T. Venkateswara and Ritchie, R. O., Metall. Mater. Trans. 30A(2) in press (1999).CrossRefGoogle Scholar
13. 1. Campbell, P., McKelvey, A. L., Lillibridge, S., Rao, K. T.Venkateswara and Ritchie, R. O., in Deformation and Fracture of Ordered Intermetallic Materials IV: Titanium Aluminides, edited by Soboyejo, W. O., Srivatsan, T. S. and Fraser, H. L. (TMS, Warrendale, PA, 1996), pp. 141157.Google Scholar
14. Newman, J. C. and Raju, I. S., Eng. Fract. Mech. 15, 185192 (1981).CrossRefGoogle Scholar
15. Ritchie, R. O. and Yu, W., in Small Fatigue Cracks, edited by Ritchie, R. O. and Lankford, J. (TMSAIME, Warrendale, PA, 1986), pp. 167189.Google Scholar
16. Campbell, J. P., Kruzic, J. J., Lillibridge, S., Rao, K. T. Venkateswara and Ritchie, R. O., Scripta Mater. 37, 707712 (1997).CrossRefGoogle Scholar
17. Chan, K. S. and Shih, D. S., Metall. Mater. Trans. 28A, 7990 (1997).CrossRefGoogle Scholar
18. Chan, K. S. and Davidson, D. L., in Structural Intermatallics, edited by Darolia, R., Lewandowski, J. J., Liu, C. T., Martin, P. L., Miracle, D. B. and Nathal, M. V. (TMS, Warrendale, PA, 1993), pp. 223230.Google Scholar
19. Chan, K. S. and Shih, D. S., Metall. Mater. Trans. 29A, 7387 (1998).CrossRefGoogle Scholar
20. Kruzic, J. J., Campbell, J. P. and Ritchie, R. O., Acta Mater. 47, in press (1999).CrossRefGoogle Scholar
21. Gnanamoorthy, R., Mutoh, Y., Hayashi, K. and Mizuhara, Y., Scripta Metall. Mater. 33 (6), 907912 (1995).CrossRefGoogle Scholar
22. Davidson, D. L. and Campbell, J. B., Metall. Trans. 24A 15551574 (1993).CrossRefGoogle Scholar
23. Bowen, P., Chave, R. A. and James, A. W., Mater. Sci. Eng. A192/193 443456 (1995).CrossRefGoogle Scholar