Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:33:28.391Z Has data issue: false hasContentIssue false

Fatigue of Intermetallic Compounds and Their Composites

Published online by Cambridge University Press:  01 January 1992

N.S. Stoloff
Affiliation:
Materials Engineering Department Rensselaer Polytechnic Institute, Troy, NY 12180-3590.
T.R. Smith
Affiliation:
Materials Engineering Department Rensselaer Polytechnic Institute, Troy, NY 12180-3590.
A. Castagna
Affiliation:
Materials Engineering Department Rensselaer Polytechnic Institute, Troy, NY 12180-3590.
Get access

Abstract

Recent studies of fatigue behavior of intermetallic compounds are reviewed. Emphasis is upon fatigue damage leading to crack initiation, effects of environment on crack propagation and behavior of intermetallic matrix composites. Future research directions are suggested.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stoloff, N.S., Fuchs, G.E., Kuruvilla, A.K. and Choe, S.J. in High Temperature Ordered Intermetallic Alloys II. Mat. Res. Soc. Symp. Proc. 81, Pittsburgh, PA, 1987, pp. 247261.Google Scholar
2. Fuchs, G.E. and Stoloff, N.S., Acta Metall. 36, 1381 (1988).Google Scholar
3. Williams, K.A., Balsone, S.J., Stucke, M.A. and Larsen, J.M., presented at Aeromat 90, Long Beach, CA, 1990, pp. 2124.Google Scholar
4. Castagna, A. and Stoloff, N.S., Scripta Metall. 26, 673 (1992).Google Scholar
5. Camus, G., Duquette, D.J., Stoloff, N.S., J. Mater. Res. 5, 950, (1990).Google Scholar
6. Matuszyk, W., Camus, G., Duquette, D.J. and Stoloff, N.S., Metall. Trans. A, 21 A, 2967 (1990).Google Scholar
7. Hsiung, L.M. and Stoloff, N.S. in High Temperature Ordered Intermetallic Alloys III, Mat. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989, pp. 261267.Google Scholar
8. Hsiung, L.M. and Stoloff, N.S., Acta Metall. 38, 1191 (1990).Google Scholar
9. Hsiung, L.M. and Stoloff, N.S., Acta Metall. 40, 2993 (1992).Google Scholar
10. Smith, T.R., Kallingal, C.G., Rajan, K. and Stoloff, N.S., Scripta Metall. 27, 1389 (1992).Google Scholar
11. Gordon, D.E. and Unni, C.K., J. Mater. Res. (1992) in press.Google Scholar
12. Cullers, C.L. and Antolovich, S.D. in Superalloys 92, Proc. 7 Springs Conf. on Superalloys. TMS, Warrendale, PA, 1992, pp. 351359.Google Scholar
13. Noebe, R.D. and Lerch, B.A., Scripta Metall. 27, 1161 (1992).Google Scholar
14. Kallingal, C.G., Smith, T.R., Stoloff, N.S. and Rajan, K., Scripta Metall. 27, 1407 (1992).Google Scholar
15. Antonopolous, J.G., Brown, L.M. and Winter, A.T., Phil. Mag. 34, 549 (1976).Google Scholar
16. Choe, S.J. and Stoloff, N.S., Rensselaer Polytechnic Institute, Troy, NY, 1987 (unpublished).Google Scholar
17. Stoloff, N.S., Choe, S.J. and Rajan, K., Scripta Metall. 26, 331 (1992).Google Scholar
18. Chien, K.H. and Starke, E.A. Jr., Acta Metall. 23, 1173 (1975).Google Scholar
19. Bonda, N.R., Pope, D.P. and Laird, C., Acta Metall. 35, 2371 (1987).Google Scholar
20. Castagna, A., Shea, M. and Stoloff, N.S. in High Temperature Ordered Intermetallic Alloys IV. Mat. Res. Soc. Proc. 213, Pittsburgh, PA, 1991, pp. 609616.Google Scholar
21. Liu, C.T., McKamey, C.G. and Lee, E.H., Scripta Metall. 24, 385 (1990).Google Scholar
22. Castagna, A. and Stoloff, N.S. in High Temperature Ordered Intermetallic Alloys V, Mat. Res. Soc. Symp. Proc, 1992, in press.Google Scholar
23. Heldt, L., TMS Fall Meeting, Chicago, Illinois, Nov. 1992, unpublished.Google Scholar
24. McKamey, C.G., Horton, J.A. and Liu, C.T., Scripta Metall. 22, 1679 (1988).Google Scholar
25. Aswath, P.B. and Suresh, S., Metall. Trans. 22A, 817 (1991).Google Scholar
26. Hsiung, L.M., M.S. Thesis, New Mexico Institute of Technology, Socorro, New Mexico, (1986).Google Scholar
27. Davidson, D.L., Campbell, J.B. and Page, R.A., Metall. Trans. A 22A, 377 (1991).Google Scholar
28. Aswath, P.B. and Suresh, S., Mat. Sci. and Eng. A114, L5 (1989).Google Scholar
29. Balsone, S.J., Maxwell, D.C., Khobaib, M. and Nicholas, T. in Fatigue 90. edited by Kitagawa, H. and Tanaka, T. (Materials and Components Eng. Publ. Ltd., III, Warley, UK (1990) pp. 19051910.Google Scholar
30. Wessels, J.F., Marquardt, B.J. and Krueger, D.D., presented at TMS-AIME Symp. on Creep and Fracture of Titanium Aluminides. TMS, Indianapolis, IN, 1989.Google Scholar
31. Vekaturaman, S., AFWAL-TR-87-4103. Air Force Materials Lab, Wright Patterson Air Force Base, Ohio, (1987).Google Scholar
32. Larsen, J.M., Williams, K.A., Balsone, S.J. and Stucke, M.A. in High Temperature Aluminides and Intermetallics, edited by Whang, S.H. et al, TMS-AIME, Warrendale, PA, 1990, pp. 521556.Google Scholar
33. Soboyejo, W.O., Aswath, P.B. and Deffeyes, J.E., Mat. Sci. and Eng. A. A138, 95, 1991.Google Scholar
34. Venkateswara Rao, K.T., Soboyejo, W.O. and Ritchie, R.O., submitted to Metall. Trans. A, (1992).Google Scholar
35. Murugesh, L., Venkateswara Rao, K.T., DeJonghe, L.C. and Ritchie, R.O. in Intermetallic Composites II. Mat. Res. Soc. Proc. 273, 1992, in press.Google Scholar
36. Venkateswara Rao, K.T., Odette, G.R. and Ritchie, R.O., Acta Metall. 40, 353 (1992).Google Scholar
37. Venkateswara Rao, K.T. and Ritchie, R.O., submitted to Mat. Sci. and Eng. A. (1992).Google Scholar
38. Nardone, Vincent C., Metall. Trans. A. 23A, 563 (1992).Google Scholar
39. Doherty, J.E., Giamei, A.F. and Kear, B.H., Metall. Trans. A 6A, 2195 (1975).Google Scholar