Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T23:08:19.419Z Has data issue: false hasContentIssue false

Fast-Switching, High-Contrast Electrochromic Thin Films Prepared Using Layer-by-Layer Assembly of Charged Species

Published online by Cambridge University Press:  01 February 2011

Jaime C. Grunlan*
Affiliation:
Department of Mechanical Engineering and Polymer Technology Center, Texas A&M University, College Station, TX 77843–3123, U.S.A.
Get access

Abstract

Thin films were prepared by depositing alternating layers of tungstate anion (WO42-) and poly(4-vinylpyridine-co-styrene) (PVP-S) onto an electrode from aqueous solutions. These films have very high contrast (CR > 8) relative to equivalent films prepared using poly(ethylene dioxythiophene) (PEDOT), but suffer from slow color change due to poor electrical conductivity. The switching time of the tungstate-based films was decreased by an order of magnitude, from 30 seconds down to three, by adding layers of indium tin oxide (ITO) particles stabilized with poly(diallyldimethylammonium chloride) (PDDA). In this case, a four-layer repeating structure was created (i.e., PVP-S and PDDA-ITO were each deposited every fourth layer). Unlike tungstate, ITO has a high intrinsic conductivity (∼ 104 S/cm) that accounts for the dramatic increase in the switching speed. It is only through the nanometer-scale control of film architecture, provided with the layer-by-layer (LbL) deposition process, that switching speed and contrast ratio can be optimized simultaneously.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bertrand, P., Jonas, A., Laschewsky, A., and Legras, R., Macromol. Rapid Comm., 21, 319 (2000).Google Scholar
2. Multilayer Thin Films, edited by G. Decher and J. B. Schlenoff (Wiley-VCH, 2002).Google Scholar
3. Hammond, P. T., Advanced Materials, 16, 1271 (2004).Google Scholar
4. Nolan, C. M., Serpe, M. J., and Lyon, L. A., Biomacromolecules, 5, 1940 (2004).Google Scholar
5. Kim, J. H., Kim, S. H., and Shiratori, S., Sens. Actuat. B, 102, 241 (2004).Google Scholar
6. DeLongchamp, D. M. and Hammond, P. T., Langmuir, 20, 5403 (2004).Google Scholar
7. Yao, G. J., Wang, B. Q., Dong, Y. P., Zhang, M. F., Yang, Z. H., Yao, Q. L., Yip, L. J. W., and Tang, B. Z., J. Polym. Sci. A Polym. Chem., 42, 3224 (2004).Google Scholar
8. Lvov, Y., Ariga, K., Onda, M., Ichinose, I., and Kunitake, T., Langmuir, 13, 6195 (1997).Google Scholar
9. Sui, Z., Salloum, D., and Schlenoff, J. B., Langmuir, 19, 2491 (2003).Google Scholar
10. Mermut, O. and Barrett, C. J., J. Phys. Chem. B, 107, 2525 (2003).Google Scholar
11. Buscher, K., Graf, K., Ahrens, H., and Helm, C. A., Langmuir, 18, 3585 (2002).Google Scholar
12. Zhang, H. and Ruhe, J., Macromolecules, 36, 6593 (2003).Google Scholar
13. Shiratori, S. S. and Rubner, M. F., Macromolecules, 33, 4213 (2000).Google Scholar
14. Dubas, S. T. and Schlenoff, J. B., Macromolecules, 32, 8153 (1999).Google Scholar
15. Liu, S., Kurth, D. G., Mohwald, H., and Volkmer, D., Adv. Mater., 14, 225 (2002).Google Scholar
16. DeLongchamp, D. M., Kastantin, M., and Hammond, P. T., Chem. Mater., 15, 1575 (2003).Google Scholar
17. Huguenin, F., Ferreira, M., Zucolotto, V., Nart, F. C., Torresi, R. M., and Oliveira, O. N., Chem. Mater., 16, 2293 (2004).Google Scholar
18. DeLongchamp, D. M. and Hammond, P. T., Adv. Func. Mater., 14, 224 (2004).Google Scholar
19. Babinec, S. J. in Electrochromic Materials, Proceedings of the Electrochemical Society, New Orleans, LA, October, 1993; edited by Ho, K. C. and MacArthur, D. A. (Electrochemical Society: Pennington, NJ, 1994) p. 30.Google Scholar
20. Coleman, J. P., Lynch, A. T., Madhukar, P., and Wagenknecht, J. H., Sol. Energy Mater. Sol. Cells, 56, 375 (1999).Google Scholar
21. DeLongchamp, D. and Hammond, P. T., Adv. Mater., 13, 1455 (2001).Google Scholar
22. Grunlan, J. C., Coleman, J. P., and Shu, L., Polym. Mater. Sci. Eng., 90, 589 (2004).Google Scholar