Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T23:04:15.842Z Has data issue: false hasContentIssue false

Fast Deposition of Polycrystalline Silicon Films by Hot-Wire CVD

Published online by Cambridge University Press:  15 February 2011

A. R. Middya
Affiliation:
Laboratoire de Physique des Interfaces des Couches Minces, Ecole Polytechnique, CNRS UPR A 0258, F- 91128 Palaiseau, France
A. Lloret
Affiliation:
Laboratoire de Physique des Interfaces des Couches Minces, Ecole Polytechnique, CNRS UPR A 0258, F- 91128 Palaiseau, France
J. Perrin
Affiliation:
Laboratoire de Physique des Interfaces des Couches Minces, Ecole Polytechnique, CNRS UPR A 0258, F- 91128 Palaiseau, France
J. Huc
Affiliation:
Laboratoire de Physique des Interfaces des Couches Minces, Ecole Polytechnique, CNRS UPR A 0258, F- 91128 Palaiseau, France
J. L. Moncel
Affiliation:
Laboratoire de Physique des Interfaces des Couches Minces, Ecole Polytechnique, CNRS UPR A 0258, F- 91128 Palaiseau, France
J. Y. Parey
Affiliation:
Laboratoire de Physique des Interfaces des Couches Minces, Ecole Polytechnique, CNRS UPR A 0258, F- 91128 Palaiseau, France
G. Rose
Affiliation:
Laboratoire de Physique des Interfaces des Couches Minces, Ecole Polytechnique, CNRS UPR A 0258, F- 91128 Palaiseau, France
Get access

Abstract

Polycrystalline silicon thin films have been deposited at fast growth rates (50 Å/s) by hotwire chemical vapour deposition (HW-CVD) from SiH4/H2 gas mixtures at low substrate temperature (400–500°C). The surface morphology of these films consists of 0.5 – 2.0μm dendritic grains as seen by electron microscopy. The films have a columnar morphology with grains starting from the substrate either on glass or c-Si. Even the 150 nm thick initial layer is polycrystalline. The preferential crystalline orientation of the poly-Si film is apparently not governed by the radiative source but strongly depends on the type and orientation of the substrate. A strong hydrogen dilution (>90%) of silane is essential to obtain poly-Si films with optimal crystalline structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Werner, J. H., Bergman, R. and Brendel, R., in Advances in Solid state Physics, Vol. 34 edited by Heibig, R. (Vieweg, Braunschweig, Wiesbaden, 1994) p. 115.Google Scholar
2. Carlson, D.E., OPTOELECTRONICS - Device and Technology, 9, 307 (1994).Google Scholar
3. Matsuyama, T., Baba, T., Takahama, T., Wakisaka, K. and Tsuda, S., OPTOELECTRONICS - Device and Technology, 9, 391 (1994).Google Scholar
4. shi, Z., Young, T.L., Zheng, G. F. and Green, M., Solar Energy Materials & Solar Cells 31, 51 (1993).Google Scholar
5. Kondoh, E., ohata, T., Mitomo, T. and K. ohtsuka, Appl. Phys. Lett., 59, 488 (1991).Google Scholar
6. Despande, S.V., Dupuie, J. L. and Gulari, E., Appl. Phys. Lett. 61, 1420 (1992).Google Scholar
7. Despande, S. V., Gulari, E., Haris, S. J. and Weiner, Anita M., 65, 1757 (1994).Google Scholar
8. Matsumura, H., Hosoda, Y. and Furukawa, S. in Amorphous Silicon Technology - 1994, edited by Schiff, E.A., Thomson, M. J., Madan, A., Tanaka, K. and Lecomber, P.G. (Mater. Res. Soc. 336, San Francisco, CA, 1994) pp 3742.Google Scholar
9. Cifre, J., Bertomeu, J., Puigdollers, J., Polo, M. C., Andreu, J. and Lloret, A., Appl. Phys. A 59, 645 (1994).Google Scholar
10. Klug, H.P. and Alexander, L.E., X-Rav Diffraction Procedures, (Willy, New York, 1974) p. 491.Google Scholar