Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T09:12:24.130Z Has data issue: false hasContentIssue false

The Failure Mechanism of MOCVD TiN Diffusion Barrier at high Temperature

Published online by Cambridge University Press:  15 February 2011

Hoojeong Lee
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
Robert Sinclair
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
Pamela Li
Affiliation:
Novellus Systems Inc, 81 Vista Montana, San Jose, CA 95134
Bruce Roberts
Affiliation:
Novellus Systems Inc, 81 Vista Montana, San Jose, CA 95134
Get access

Abstract

By using TDEAT and ammonia gas, MOCVD TiN films were grown at 300°C and 30torr.After annealing in a vacuum furnace at 500°C, 550°C, and 600°C, the TiN films were investigated by transmission electron microscopy (TEM). After annealing at 550°C, both hexagonal and cubic AIN phase were found at the interface between Al and TiN films. A Ti rich phase such as Al3Ti was also found at Al side. The failure mechanism during high temperature annealing is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pintchovski, F., White, T., Travis, E., Tobin, P. J., and Price, J. B., in Tungsten and Other Refractory Metals for VLSI Applications VI, edited by Blewer, R. S. and McConica, C. M. (Mater. Res. Soc., Pittsburgh, PA, 1989) p. 275.Google Scholar
2. Fix, R. M., Gordon, R. G., and Hoffman, D. M., Chem. Mater., 2, 235 (1990).Google Scholar
3. Fix, R. M., Gordon, R. G., and Hoffman, D. M., Chem. Mater., 3, 1138 (1991).Google Scholar
4. Itoh, T., Konno, T. J., Sinclair, R., Raaijmakers, I. J. and Roberts, B. E., in Advanced Metallization for Devices and Circuits-Science, Technology, and Manufacturability, edited by Murarka, S. P. et al. (Mater. Res. Soc. Symp. Proc., 337, Pittsburgh, PA, 1994) p. 735.Google Scholar
5. Beyers, R., Sinclair, R. and Thomas, M. E., J. Vac. Sci. Technol., B2, 781 (1984).Google Scholar
6. Wittmer, M., J. Appl. Phys., 53(2) (1982).Google Scholar
7. Grigorov, G.L., Grigorov, K.G., Stoyanova, M., Vignes, J.L., Langeron, J.P., Denjcan, P., and Perriere, J., Appl. Phys., A55, 502 (1992).Google Scholar
8. Grigorov, G.L., Grigorov, K.G., Stoyanova, M., Vignes, J.L., Langeron, J.P., and Denjean, P., Appl. Phys., A57, 195 (1993).Google Scholar
9. Okihara, M., Hirashita, N., Hashimoto, K., and Onoda, H., Appl. Phys. Lett., 66(11), 1328 (1995).Google Scholar
10. Sobue, S., Mukainakano, S., Ueno, Y., and Hattori, T., Jpn. J. Appl. Phys., 34, 987 (1995).Google Scholar
11. Hultman, L., Benhenda, S., Radnoczi, G., Sundgren, J.E., Greene, J.E., and Petrov, I., Thin Solid Films, 215, 152 (1992).Google Scholar
12. Raman, A. and Schubert, K., Metallkde, Z., 56, 99 (1965).Google Scholar
13. Bower, R. W., Appl. Phys. Lett., 23, 99 (1973).Google Scholar
14. Shen, B. W., Anthony, J. M., Chang, P. H., Keenan, J., Matyi, R. and Tsai, H. L., in Thin Filns-Interfaces and Phenomena, edited by Nemanich, R. I., Ho, P. S., and Lau, S. S. (Mater. Res. Soc., Pittsburgh, PA, 1986) p. 103.Google Scholar