Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:28:07.092Z Has data issue: false hasContentIssue false

A factorial design of experiments approach to synthesize CZTS absorber material from aqueous media

Published online by Cambridge University Press:  04 February 2011

Prashant K. Sarswat
Affiliation:
Metallurgical Engineering, University of Utah, Salt Lake City, UT, United States.
Michael L. Free
Affiliation:
Metallurgical Engineering, University of Utah, Salt Lake City, UT, United States.
Ashutosh Tiwari
Affiliation:
Materials science and engineering, University of Utah, Salt Lake City, UT, United States.
Get access

Abstract

Cu2ZnSnS4 (CZTS), an emerging p-type quaternary chalcogenide, offers many potential advantages as an absorber material. Using factorial design of experiments approach, single stage Cu-Zn-Sn co-electrodeposition from aqueous solution followed by annealing is reported in this paper. Factorial experiments facilitate to study the effects of each factor on the response variable as well as effects of interactions between individual factors on the response variable. Selected factors include concentration of individual ionic species, time of sulfurization and amount of complexing agent, whereas CZTS phase, band gap, carrier concentration, open circuit voltage, and morphological characteristics are the response variables. A model has been developed to show and predict the domain for the best possible factors for CZTS based device fabrication.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Katagiri, H., Sasaguchi, N., Hando, S., Hoshino, S., Ohashi, J., Yokota, T., Sol. Energ. Mater. Sol. C. 49, 407 (1997).Google Scholar
2. Chen, S., Gong, X. G., Walsh, A., and Wei, S. H., Applied Physics Letters 94, 41903 (2009).Google Scholar
3. Zhang, X., Shi, X., Ye, W., Ma, C., Wang, C., Applied Physics A. 94, 381(2009).Google Scholar
4. Araki, H., Kubo, Y., Mikaduki, A., Jimbo, K., Maw, W. S., Katagiri, H., Yamazaki, M., Oishi, K., Takeuchi, A., Sol. Energ. Mater. Sol. C. 93, 996 (2009).Google Scholar
5. Araki, H., Mikaduki, A., Kubo, Y., Sato, T., Jimbo, K., Maw, W. S., Katagiri, H., Yamazaki, M., Oishi, K., Takeuchi, A., Thin Solid Films 517, 1457(2008).Google Scholar
6. Araki, H., Kubo, Y., Jimbo, K., Maw, W. S., Katagiri, H., Yamazaki, M., Oishi, K., Takeuchi, A., PHYS. Status Solidi C 6, 1266 (2009).Google Scholar
7. Chan, C. P., Lam, H., Wong, K. Y., Surya, C., Mater. Res. Soc. Symp. Proc. 1123, (2009) 06.Google Scholar
8. Fernandese, P. A., Salomé, P. M. P., da Cunha, A. F., Semicond. Sci. Technol. 24, 105013 (2009).Google Scholar
9. Fernandese, P. A., Salomé, P. M. P., da Cunha, A. F., Thin Solid Films 517, 2519 (2009).Google Scholar
10. Katagiri, H., Jimbo, K., Maw, W. S., Oishi, K., Yamazaki, M., Araki, H., Takeuchi, A., Thin Solid Films 517, 2455 (2009).Google Scholar
11. Guo, Q., Hillhouse, H. W., Agrawal, R., J. Am. Chem. Soc. 131(33), 11673 (2009).Google Scholar
12. Scragg, J.J., Dale, P.J., Peter, L.M., Thin Solid Films 517, 2481 (2009).Google Scholar
13. Pawar, S. M., Pawar, B.S., Moholkar, A.V., Choi, D. S., Yun, J. H., Moon, J.H., Kolekar, S.S., Kim, J. H., Electrochimica Acta 55, (2010).Google Scholar
14. Snure, M., Tiwari, A., Applied Physics Letters 91, 092123 (2007).Google Scholar
15. Cardon, F., Gomes, W. P., J.Phys. D: Appl. Phys. 11, (1978).Google Scholar
16. Scragg, J.J., Dale, P.J., Peter, L.M., Zoppi, G., Forbes, I. PHYS. Status Solidi B 9, 245 (2008).Google Scholar