Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-09T06:54:39.404Z Has data issue: false hasContentIssue false

Facile Botanical Templating Strategies for the Growth of Porous Metal Oxides in Artificial Leaf-Like Macroscale Structures for Potential Use in Energy Related Catalysis

Published online by Cambridge University Press:  16 September 2013

Edward G. Gillan*
Affiliation:
Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
Get access

Abstract

A major challenge in utilizing living botanical materials, such as cellular leaf structures, as templates is that they are filled with water and conventional dehydration strategies often collapse or degrade the intricate botanical structure. This restricts the ability to introduce water reactive precursors into such structures. We have developed a room-temperature chemical method using acidified 2,2-dimethoxypropane to dehydrate water-rich botanical materials (e.g., fern leaves and water-rich jade succulents). This mild dehydration process leaves much of the porous cellular leaf structure intact even with ∼90% mass loss. These chemically dehydrated templates have been utilized in the growth of porous and ordered leaf replicate structures consisting of TiO2 and SiO2 via sol-gel precursor impregnation methods. These white metal oxide products exhibit external and internal structures that look very similar to their original templates, but are shrunken intact versions of the original. This paper details the chemical procedures that enable one to effectively use sensitive botanical templates in metal oxide growth. The physical and structural properties of several dried porous templates and macroporous anatase TiO2 and amorphous or crystoballite SiO2 products will be described. Recent efforts to use these botanical templates to produce other porous metal oxides (e.g., Co3O4, NiO, and CuO) using both halide and acetate precursor impregnation strategies are noted. Porous metal oxides with interconnected pore walls may have use in electrochemical energy storage systems, including in photocatalytic, photovoltaic or battery systems.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Davis, M. E. Nature 2002, 417, 813821.CrossRefGoogle Scholar
(a) Tiemann, M. Chem. Mater. 2008, 20, 961971 and references therein. (b) Yue, W.; Randorn, C.; Attidekou, P. S.; Su, Z.; Irvine, J. T. S.; Zhou, W. Adv. Funct. Mater. 2009, 19, 2826–2833 and references therein. (c) Doherty, C. A.; Caruso, R. A.; Smarsly, B. M.; Adelhelm, P.; Drummond, C. J. Chem. Mater. 2009, 21, 5300–5306. (d) Drisko, G. L.; Zelcer, A.; Luca, V.; Caruso, R. A.; Soler-Illia, G. J. de A. A. Chem. Mater. 2010, 22, 4379–4385. (e) Zhao, B.; Collinson, M. M. Chem. Mater. 2010, 22, 4312–4319.CrossRefGoogle Scholar
(a) Orilall, M. C.; Abrams, N. M.; Lee, J.; DiSalvo, F. J.; Wiesner, U. J. Am. Chem. Soc. 2008, 130, 88828883. (b) Sauvage, F.; Chen, D.; Comte, P.; Huang, F.; Heiniger, L.-P.; Cheng, Y.-B.; Caruso, R. A.; Graetzel, M. ACS Nano 2010, 4, 4420–4425. (c) Li, F.; Qian, Y.; Stein, A. Chem. Mater. 2010, 22, 3226–3235.CrossRefGoogle Scholar
(a) c.f. several reviews in: Mater. Res. Soc. Bull., 35 (February 2010). (b) Fratzl, P.; Weinkamer, R. Prog. Mater. Sci. 2007, 52, 12631334. (c) Fan, T.-X.; Chow, S.-K.; Zhang, D. Prog. Mater. Sci. 2009, 54, 542–659. (d) Sotiropoulou, K.; Sierra-Sastre, Y.; Mark, S. S.; Batt, C. A. Chem. Mater. 2008, 20, 821–834. (e) Kusari, U.; Bao, Z.; Cai, Y.; Ahmad, G.; Sandhage, K. H.; Sneddon, L. G. Chem. Commun. 2007, 1177–1179. (f) Culverwell, E.; Wimbush, S. C.; Hall, S. R Chem. Commun. 2008, 1055–1057. (g) Han, J.; Su, H.; Zhang, D.; Chen, J.; Chen, Z. J. Mater. Chem. 2009, 19, 8741–8746.CrossRefGoogle Scholar
(a) Evans, D. J. J. Mater. Chem. 2008, 18, 37463754. (b) Klem, M. T.; Willits, D.; Solis, D. J.; Belcher, A. M.; Young, M.; Douglas, T. Adv. Funct. Mater. 2005, 15, 1489–1494. (c) Suzuki, M.; Nakajima, Y.; Sato, T.; Shirai, H.; Hanabusa, K., Chem. Commun. 2006, 377–379. (d) Chen, C.-L.; Rosi, N. L. Angew. Chem. Int. Ed. 2010, 49, 1924–1942.CrossRefGoogle Scholar
(a) Gratzel, M. J. Photoch. Photobio. C. 2003, 4, 145153. (b) Palmisano, G.; Garcia-Lopez, E.; Marci, G.; Loddo, V.; Yurdakal, S.; Augugliaro, V.; Palmisano, L. Chem. Commun. 2010, 46, 7074–7089. (c) Zhou, H.; Li, X.; Fan, T.; Osterloh, F. E.; Ding, J.; Sabio, E. M.; Zhang, D.; Guo, Q. Adv. Mater. 2010, 22, 951–956. (d) Gust, D.; Moore, T. A.; Morre, A. L. Acc. Chem. Res. 2001, 34, 40–48. (e) Benniston, A.; Harriman, A. Materials Today 2008, 11, 26.CrossRefGoogle Scholar
(a) Greil, P. Mater. Res. Soc. Bull. 2010, 35, 145149. (b) Cheung, T. L. Y.; Ng, D. H. L., J. Am. Ceram. Soc. 2007, 90, 559–564. (c) Tampieri, A.; Sprio, S.; Ruffini, A.; Celotti, G.; Lesci, I. G.; Roveri, N. J. Mater. Chem. 2009, 19, 4973–4980. (d) Dong, A.; Wang, Y.; Tang, Y.; Ren, N.; Zhang, Y.; Yue, Y.; Gao, Z. Adv. Mater. 2002, 14, 926. (e) Caruso, R. A. Angew. Chem. Int. Ed. 2004, 43, 2746–2748. (f) Huang, J.; Kunitake, T. J. Am. Chem. Soc. 2003, 125, 11834–11835.CrossRefGoogle Scholar
(a) Li, X.; Fan, T.; Zhou, H.; Chow, S.-K.; Zhang, W.; Zhang, D.; Guo, Q.; Ogawa, H., Adv. Funct. Mater. 2009, 19, 4556. (b) Zhou, H. Fan, T., Zhang, D.; Guo, Q.; Ogawa, H., J. Mater. Chem. 2009, 19, 2695–2703. (c) Li, X.; Jiang, J.; Wang, Y.; Nie, X.; Qu, F., J. Sol-Gel Sci. Technol. 2010, 56, 75–81.CrossRefGoogle Scholar
Zimmerman, A. B.; Nelson, A. M.; Gillan, E. G. Chem. Mater. 2012, 24, 43014310.CrossRefGoogle Scholar
Perera, S.; Zelenski, N.; Gillan, E. G. Chem. Mater. 2006, 18, 23812388.CrossRefGoogle Scholar