Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T23:03:48.213Z Has data issue: false hasContentIssue false

Facet Evolution and Selective Growth of GaAs/AlGaAs Lateral Structure Grown by Growth–Interrupted Chemical Beam Epitaxy Using Unprecracked Monoethylarsine

Published online by Cambridge University Press:  15 February 2011

Jeong-Rae Ro
Affiliation:
Electronics and Telecommunications Research Institute, Taejon 305–600, Korea
Sung-Bock Kim
Affiliation:
Electronics and Telecommunications Research Institute, Taejon 305–600, Korea
Seong-Ju Park
Affiliation:
Kwangju Institute of Science and Technology, Kwangju 506–303, Korea
Jihwa Lee
Affiliation:
Seoul National University, Seoul 151–742, Korea
El-Hang Lee
Affiliation:
Electronics and Telecommunications Research Institute, Taejon 305–600, Korea
Get access

Abstract

Facet evolution and selective area epitaxy of GaAs/AIGaAs ridge and V-groove structure grown on non-planar GaAs(100) substrate by chemical beam epitaxy(CBE) have been investigated for nanostructure applications. To enhance the crystallographic selectivity and to study the new facet evolution on patterned substrate, GaAs and AlGaAs epilayer were grown by growth-interruption mode and continuous mode, respectively. High selectivity of GaAs layer was observed to depend on the various crystallographic planes even at low growth temperature. This was attributed to the efficient Ga surface migration and desorption during the growth-interruption periods. The growth-interruption method was found to be very efficient in improving the morphology of faceted surfaces. We demonstrated that the formation of (111) V-groove and (411) ridge GaAs structures which were surrounded by AlGaAs layer to show the potential implication of this method for the formation of quantum wires.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Arakawa, Y., and Yariv, A., IEEE J. Quantum Electron. QE-21, 1666 (1985).Google Scholar
2. Skocpol, W. J., Jackel, L. D., Hu, E. L., Howard, R. E., and Fetter, L. A., Phy. Rev. Lett. 49, 954 (1982).Google Scholar
3. Temkin, H., Dolan, G. J., Panish, M. B., and Chu, S. N. G., Appl. Phys. Lett. 50, 413 (1987).Google Scholar
4. Kapon, E., Hwang, D. M., and Bhat, R., Phy. Rev. Lett. 63, 430 (1989).Google Scholar
5. Tsukamoto, S., Nagamune, Y., Nishioka, M., and Arakawa, Y., J. Appl. Phys. 71, 533 (1992).Google Scholar
6. Tsai, C. S., Lebens, J. A., Ahn, C. C., Nouhi, A., and Vahala, K. J., Appl. Phys. Lett. 60, 240 (1992).Google Scholar
7. Tsukamoto, S., Nagamune, Y., Nishioka, M., and Arakawa, Y., Appl. Phys. Lett. 62, 49 (1993).Google Scholar
8. Kojima, K., Mitsunaga, K., and Kyuma, K., Appl. Phys. Lett. 55, 882 (1989).Google Scholar
9. Hersee, S. D., Barbier, E., and Blondeau, R., J. Cryst. Growth 77, 310 (1986).Google Scholar
10. Shimomura, S., Wakejima, A., Adachi., A. Okamoto, Y., Sano, N., Murase, K., and Hiyamizu, S., Jpn. J. Appl. Phys. 32, L1728 (1993).Google Scholar
11. Chadi, D. J., Phys. Rev. B.29, 786 (1984).Google Scholar
12. Park, S. J., Ro, J. R., Sim, J. K., and Lee, E. H., Mat. Res. Symp. Proc. 281, 37 (1993).Google Scholar
13. Park, S. J., Ro, J. R., Sim, J. K., and Lee, E. H., ETRI Journal 16, 1 (1994).Google Scholar
14. Ro, J. R., Park, S. J., Kim, S. B. and Lee, E. H., J. Cryst. Growth 150, 627 (1995); S. J. Park, J. R. Ro, J. K. Sim, and E. H. Lee, J. Cryst. Growth 136, 138 (1994).Google Scholar
15. Smith, J. S., Derry, P. L., Margalit, S., and Yariv, A., Appl. Phys. Lett. 47, 712 (1985).Google Scholar
16. Ohtsuka, M., and Miyazawa, S., J. Appl. Phys. 64, 3522 (1988).Google Scholar
17. Tsang, W. T., and Cho, A. Y., Appl. Phys. Lett. 30, 293 (1977).Google Scholar
18. Kapon, E., Hwang, D. M., Walther, M., Bhat, R. and Stoffel, N. G., Surf. Sci. 267, 593 (1992).Google Scholar