Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T02:24:24.905Z Has data issue: false hasContentIssue false

Face to face with enemy – analysis of aqua carbonate hydroxide second surface phases in proton conducting perovskite ceramic electrolytic membrane.

Published online by Cambridge University Press:  30 March 2012

Aneta Slodczyk
Affiliation:
LADIR, UMR7075, CNRS - UPMC, 4 Place Jussieu, Paris, 75005, France.
Caroline Tran
Affiliation:
LADIR, UMR7075, CNRS - UPMC, 4 Place Jussieu, Paris, 75005, France.
Philippe Colomban
Affiliation:
LADIR, UMR7075, CNRS - UPMC, 4 Place Jussieu, Paris, 75005, France.
Get access

Abstract

The various perovskite ceramic electrolytic membranes, (Ba,Sr)(Zr,Ce,Nb,In,Sn)O3 modified by incorporation of Ln/RE elements, are widely investigated due to their high industrial potential for H2 production and CO2 conversion. One of the most important criteria to classify such ceramic as a good membrane is its high mechanical and chemical stability over thousands hours in severe operating conditions: high temperature and (high water) vapour pressure cycling. It is well known that the Ba- and Sr-based materials can easily form the mixed carbonates, hydroxides, hydrates, hydroxycarbonates, … The presence of undesirable phases, even limited to traces, on the ceramic surface, and/or at the grain boundary, may lead directly to the premature degradation. Since such mixed, hydrated, poorly crystallized phases cannot be detected by diffraction experiments, we have performed thermogravimetric analysis as well as IR and Raman spectroscopic study. The comparison of vibrational and TGA signatures characteristic of complex secondary phases i.e. (Sr/ Ba)(OH)x(CO3)y, nH2O and of proton conducting perovskite reveals that the ignorance of a second phase presence can lead to wrong conclusion concerning the bulk proton nature and understanding of associated conductivity mechanisms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ni, M., Leung, M.K.H. and Leung, D.Y.C., Int. J. Hydrogen Energy 32, 4648 (2007).Google Scholar
2. Olah, G. A, Angew. Chem. Int. Ed. 44 26362639 (2005).Google Scholar
3. Colomban, Ph., Ed. Proton Conductors: Solids, membranes and gel – materials and devices. Cambridge University Press, Cambridge, (1992).Google Scholar
4. Iwahara, H., Esaka, T., Uchida, H. and Maeda, N., Solid State Ionics 3/4, 359-363 (1981).Google Scholar
5. Colomban, Ph., Ann. Chimie Sci. Matériaux Paris 24, 118 (1999).Google Scholar
6. Kreuer, K. D., Ann. Rev. Mater. Res. 33, 333359 (2003).Google Scholar
7. Karlsson, M., Bjorketun, M. E., Sundell, P. G., Matic, A., Wahnstrom, G., Engberg, P., Borjesson, L., Ahmed, I. and Berastegui, P. Phys. Rev. B 72, 094303 (2005).Google Scholar
8. Glerup, M., Poulsen, F. W. and Berg, R. W., Solid State Ionics 148, 8392 (2002).Google Scholar
9. Sata, N., Ishigame, M. and Shin, S., Solid State Ionics 86-88, 629632 (1996).Google Scholar
10. Omata, T., Takagi, M. and Otsuka-Yao-Matsuo, S., Solid State Ionics 168, 99109 (2004).Google Scholar
11. Slodczyk, A., Colomban, Ph., Willemin, S., Lacroix, O. and Sala, B., J. Raman Spectrosc. 40 513521 (2009).Google Scholar
12. Colomban, Ph., Slodczyk, A., Lamago, D., Andre, G., Zaafrani, O., Lacroix, O., Willemin, S. and Sala, B., J. Phys. Soc. Jpn 79, Suppl. A 16 (2010).Google Scholar
13. Slodczyk, A., Colomban, Ph., Zaafrani, O., Lacroix, O., Loricourt, J., Grasset, F. and Sala, B., Mater. Res. Soc. Symp. Proc. 1309 3944 (2011).Google Scholar
14. Slodczyk, A., Dabrowski, B., Malikova, N. and Colomban, Ph., Mater. Res. Soc. Symp. Proc. 1311 GG06–25 (2010).Google Scholar
15. Kreuer, K.-D., Schönherr, E., and Maier, J. in High Temperature Electrochemical Behaviour of Fast Ion and Mixed Conductors, Poulsen, F. W., Bentzen, J. J., Jacobsen, T., Skou, E., and Østergård, M. J. L., eds., Risø National Laboratory, Roskilde, 297304 (1993).Google Scholar
16. Kreuer, K. D., Schönherr, E., and Maier, J. Solid State Ionics 70/71, 278284 (1994).Google Scholar
17. Jalarvo, N., Haavik, C., Kongshaug, C., Norby, P. and Norby, T., Solid State Ionics 180, 11511156 (2009).Google Scholar
18. PCT Patent WO 2008/152317 A2 (18-12-2008).Google Scholar
19. Lutz, H.D., Eckers, W., Schneider, G. and Haeuseler, H., Spectrochimica Acta Part A, 37 561567 (1981).Google Scholar
20. Lutz, H.D., Beckenkamp, K. and Möller, H., J. Mol. Structure 322 263266 (1994).Google Scholar
21. Hadzi, D., Pure Appl. Chem. 11 435454 (1965).Google Scholar
22. Colomban, Ph. and Tomkinson, J., Solid State Ionics 97, 123134 (1997).Google Scholar