Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T22:59:44.206Z Has data issue: false hasContentIssue false

Fabrication Techniques for GaAs Based HBTS and FETs

Published online by Cambridge University Press:  22 February 2011

F. Ren*
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

Process technologies for self-aligned AlGaAs/GaAs and lnGaP/GaAs heterojunction bipolar transistors (HBTs) as well as dry etching fabrication schemes for submicron AlGaAs/GaAs based field effect transistors (FETs) are presented. Multiple energy F+ and H+ ions were used to isolate the active devices for HBTs. The resistance of test wafers at 200 °C showed no change over periods of 50 days. Highly selective dry and wet etch techniques for InGaP/GaAs and AlGaAs/GaAs material systems were used to uniformly expose junctions. Reliability of the alloyed ohmic contact and feasibility of the non-alloyed ohmic contact metallizations for both p and n type GaAs layers will be discussed. The reproducible gate recess etching is one of the critical steps for AlGaAs/GaAs based FETs. The etching selectivity, damage, pre and post-clean procedure were studied in terms of device performance. A simple low temperature SiNx deposition and an etch-back process with optical stepper were used to demonstrate 0.1 μm Y-shape gate feature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mimura, T., Hiyamizu, S. and Hikosak, S., Japan J. Appl. Phys. L317 (1981)Google Scholar
2. Smith, P. M., Chao, P. C., Ballingall, J. M. and Swanson, A. W., Microwave J. vol. 33, No. 5, 71 (1990).Google Scholar
3. Kroemer, H., Proc. IEEE, vol. 70, 13 (1982).Google Scholar
4. Yamauchi, Y., Nakajima, O., Nagata, K., Ito, H. and Ishibashi, T., IEEE GaAs IC Symp. Digest (San Diego), 121 (1989).Google Scholar
5. Ren, F., Abernathy, C. R., Pearton, S. J., Fullowan, T. R., Lothian, J. R., Wisk, P. W., Chen, Y. K., Hobson, W. S. and Smith, P. R., Electron. Lett. vol. 27, 2391 (1991).Google Scholar
6. Ren, F., Abernathy, C. R., Pearton, S. J., Lothian, J. R., Wisk, P. W., S. Chu, N. G., Fullowan, T. R., and Chen, Y. K., Electron. Lett. vol. 28, 2250 (1992).Google Scholar
7. Ren, F., Pearton, S. J., Hobson, W. S., Fullowan, T. R., Lothian, J. and Yanof, A. W., Appl. Phys Lett. vol. 56, 860 (1989).Google Scholar
8 Pearton, S. J., Poate, J. M., Sette, F., Gibson, J. M., Jacobson, D. C. and Williams, J. S., Nucl. Instrum. Methods Phys. B 19/20, 369 (1987).Google Scholar
9. Pearton, S. J., Mat. Sci. Reports, vol. 4, 313 (1990).Google Scholar
10. Pearton, S. J., Ren, F., Lothian, J. R., Fullowan, T. R., Kopf, R. F., Chakrabarti, U. K., Hui, S. P., Emerson, A. B., Kostelak, R. L. and Pei, S. S., J. Vac. Sci. Technol. vol. B9, No. 5, 2487 (1991).Google Scholar
11. Wang, S. W., J. Electrochem. Soc. vol. 133, 784 (1986).Google Scholar
12. Lishhan, D. G., Wong, H. F., Green, D. L., Hu, E. L., Merz, J. M. and Kirllov, D., J. Vac. Sci. Technol. B7, 565 (1989).Google Scholar
13. Abe, M., Minura, T., Kobayashi, N., Suzuki, M., Kosugi, M., Nakayama, M., Odana, k. and Hanyu, I., IEEE Trans. Electron Devices, vol. 36, 2021 (1989).Google Scholar
14. Pereira, R., VanHove, M., DeRaedt, W, Jansen, Ph, Borghs, G., Jonckheere, R. and VanRossum, M., J. Vac. Sci. Technol. vol. B9, No. 4, 1978 (1991).Google Scholar
15. Cooper, C. B. III, Salimian, S. and MacMillan, H. F., Appl. Phys. Lett. vol. 51, 2225 (1987).Google Scholar
16. Kenefick, K., J. Electrochem. Soc. vol. 129, No. 10, 2380 (1982).Google Scholar
17. Ohta, I., Otsuki, T., Kazumura, M. and Kano, G., Etend. Abs. of 15th Conf. on Solid State Dev. and Mat., Tokyo, 73 (1983).Google Scholar
18. Laskowski, E. J., US Pattern 4923564.Google Scholar
19. Lothian, J. R., Kuo, J. M., Ren, F. and Pearton, S. J., J. of Electronic Mat. vol. 21, No. 4, 441 (1992).Google Scholar
20. Ren, F., Pearton, S. J., Abernathy, C. R., Wu, C. S., Hu, M., Pao, C. K., Wang, D. C. and Wen, C. P., IEEE Trans. Electron Device, vol. 39, No. 12, 2701 (1992).Google Scholar
21. Ren, F., Fullowan, T. R., Chu, S. N. G., Pearton, S. J., Hobson, W. S. and Emerson, A. B., J.of Electronic Mat. vol. 20, No. 4, 305 (1991).Google Scholar
22. Lahav, A., Ren, F. and Kopf, R. F., Appl. Phys. Lett. vol. 54, No. 17, 1693 (1989).Google Scholar
23. Ren, F., Emerson, A. B., Pearton, S. J., Fullowan, T. R. and Brown, J. M., Appl. Phys. Lett. vol. 58, No. 10, 1030 (1991).Google Scholar
24. Ren, F., Pearton, S. J., Lothian, J. R. and Abernathy, C. R., J. Vac. Technol. B, (1993).(in press)Google Scholar