Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:27:36.709Z Has data issue: false hasContentIssue false

Fabrication of Titanium Oxide Film with high crystallinity by the New Electrochemical Techniques

Published online by Cambridge University Press:  18 May 2012

Hiroki Ishizaki
Affiliation:
Department of Electronic System Engineering, Tokyo University of Science Suwa, 5000-1 Toyohira, Chino-shi, Nagano 391-0292, Japan
Seishiro Ito
Affiliation:
Faculty of Science and Engineering, Kinki University, 4-1 Kowakae 3-chome, Higashiosaka, Osaka 577-8502, Japan
Get access

Abstract

TiO2 films with poly crystal were electrodeposited on conductive substrate (NESA glass, approximately 10Ω/□, Asahi glass Co. Ltd.) from the titanium potassium oxalate dehydrate aqueous solution containing hydroxylamine adjusted pH 9 with KOH aq. at 333k. The peak corresponded to Ti3+ion into these TiO2 film was not observed by using X-ray photoelectron spectroscopy (XPS). The photocatalysis of TiO2 film increased with a decrease of cathodic potential. In particular, TiO2 film obtained at cathodic potential of -1.3V, had the higher photocatalysis than that of other potential.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lobl, P., Huppertz, M. and Mergel, D., Thin Sold Films, 251, 72 (1994)Google Scholar
2. Ha, H. K., Yoshimoto, M., Koinuma, H., Moon, B. K. and Ishiwara, H., Appl. Phys. Lett., 68, 2965 (1996)Google Scholar
3. Sankur, H. and Gunning, W., J. Appl. Phys., 66, 4747 (1989)Google Scholar
4. Grätzel, M., Nature, 414, 338 (2001)Google Scholar
5. Hattori, A., Tokihisa, Y., Tada, H., Tohge, N., Ito, S., Hongo, K., Shiratsuchi, R. and Nogami, G., J. Sol-Gel Sci. Tech., 22, 53 (2001)Google Scholar
6. Moulder, J. F., Stickle, W. F., Sobol, P. E. and Bomben, K. D., “Handbook of X-ray Photoelectron Spectroscopy”, Chastain, J., Editor, Perkin-Elmer Corporation Physical Electronics Division, America (1992). p.72.Google Scholar
7. Moulder, J. F., Stickle, W. F., Sobol, P. E. and Bomben, K. D., “Handbook of X-ray Photoelectron Spectroscopy”, Chastain, J., Editor, Perkin-Elmer Corporation Physical Electronics Division, America (1992). p.44 Google Scholar
8. Noel, N. and Anantharaman, P. N., J. Electroanal. Chem., 191, 127 (1985).Google Scholar
9. Lee, H. Y., Park, Y. H. and Ko, K. H., Langmuir, 16, 7289 (2000).Google Scholar
10. Okamoto, H., J. Phase Equilib., 22, 515 (2001).Google Scholar
11. Piveteau, L. D., Girona, M. I., Schlapbach, L., Barboux, P., Boilot, J. P. and Gasser, B., J. Mater. Sci., 10, 161 (1999).Google Scholar
12. Shirkhanzadeh, M., J. Mater. Sci., 6, 206 (1995).Google Scholar
13. Forouhi, A. R., Bloomer, I., Phys. Rev. B, 15, 7018 (1986)Google Scholar
14. Tang, H., Lèvy, F., Berger, H. and Schmid, P. E., Phys. Rev. B, 52, 7771 (1995)Google Scholar
15. Tang, H., Berget, H., Schmid, P. E., Levy, F. and Burri, G., Solid State Commun. 87, 847 (1993)Google Scholar
16. Pascual, J., Camassel, J. and Mathieu, H., Phys. Rev. B, 18, 5606 (1978)Google Scholar