Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:12:25.325Z Has data issue: false hasContentIssue false

Fabrication of TiO2 Nanobelt Network for Dye-Sensitized Solar Cells

Published online by Cambridge University Press:  31 January 2011

Haiyan Li
Affiliation:
[email protected], Portland State University, Physics, Portland, Oregon, United States
Jun Jiao
Affiliation:
[email protected], Portland State University, Physics, Portland, Oregon, United States
Get access

Abstract

Interconnected TiO2 nanobelt networks were prepared to serve as anode materials. The aim is to enhance the electron transport through the anode of dye-sensitized solar cells. Using an alkaline hydrothermal procedure and by controlling the reaction time, two kinds of nanostructures were synthesized: TiO2 nanobelts and the mixture of TiO2 nanobelts/TiO2 nanoparticles. This investigation suggests that TiO2 nanobelts are the result of the rearrangement of the [Ti(OH)6]2- monomers formed during the erosion process of TiO2 nanoparticles. The nanostructures of as-synthesized nanobelts were woven and interconnected, resulting in networks after an annealing process. Raman analysis indicates that both kinds of nanostructures were pure anatase. Electrical characterization suggests that the conductivities of these TiO2 nanobelt networks were higher than those of the TiO2 nanoparticle films. Under simulated sunlight with an intensity of AM 1.5 G, the solar cells made of TiO2 nanobelt networks show exceptional photocurrent in comparison to those made of TiO2 nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 O'Regan, B., Grätzel, M., Nature 353, 737(1991).Google Scholar
2 Robertson, N. Angew. Chem. Int. Ed. 45, 2338(2006).Google Scholar
3 Kuang, D. B. Wang, P. Zakeeruddin, S. M. Grätzel, M., J. Am. Chem. Soc. 128, 7732(2006).Google Scholar
4 Horiuchi, T. Miura, H. Sumioka, K. Uchida, S. J. Am. Chem. Soc. 126, 12218(2004).Google Scholar
5 Dürr, M., Schmid, A. Obermaier, M. Rosselli, S. Yasuda, A. Nelles, G. Nat. Mater. 4, 607 (2005).Google Scholar
6 Kavan, L. Grätzel, M., Gilbert, S. E. Klemenz, C. Schell, H. J. J. Am. Chem. Soc. 118, 6716 (1996).Google Scholar
7 Kopidakis, N. Benkstein, K. D. Lagemaat, J. van de, Frank, A. J. J. Phys. Chem. B 107, 11307 (2003).Google Scholar
8 Jiu, J. Isoda, S. Wang, F. Adachi, M. J. Phys. Chem. B 110, 2087(2006).Google Scholar
9 Tan, B. Wu, Y. J. Phys. Chem. B 110, 15932(2006).Google Scholar
10 Law, M. Greene, L. E. Johnson, J. C. Saykally, R. Yang, P. Nature Mater. 4, 455(2005).Google Scholar
11 Wang, Y. Du, G. Liu, H. Liu, D. Qin, S. Wang, N. Hu, C. Tao, X. Jiao, J. Wang, J. Wang, Z. L., Adv. Funct. Mater. 18, 1131(2008).Google Scholar
12 Gong, X. Selloni, A. Batzill, M. Nature Mater. 5, 665(2006).Google Scholar
13 Beattie, I. R. Gilson, T. R. Proc. R. Soc. London, Ser. A 307, 407(1968).Google Scholar
14 Ohsaka, T. Izumi, F. Fujiki, Y. J. Raman Spectrosc. 7, 321(1978).Google Scholar
15 Garcia-Belmonte, G., Kytin, V. Dittrich, T. Bisquert, J. J. Appl. Phys. 94, 5261(2003).Google Scholar