Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T15:43:06.791Z Has data issue: false hasContentIssue false

Fabrication of Three-Dimensionally Ordered Macro-/Mesoporous Titania Monoliths by a Dual-Templating Approach

Published online by Cambridge University Press:  01 July 2011

Zhiyan Hu
Affiliation:
Key Lab for Nanomaterials, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
Zhongjiong Hua
Affiliation:
Key Lab for Nanomaterials, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
Shaohua Cai
Affiliation:
Key Lab for Nanomaterials, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
Jianfeng Chen
Affiliation:
Key Lab for Nanomaterials, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
Yushan Yan
Affiliation:
Department of Chemical and Environmental Engineering, University of California at Riverside, Riverside, CA 92521
Lianbin Xu*
Affiliation:
Key Lab for Nanomaterials, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China Department of Chemical and Environmental Engineering, University of California at Riverside, Riverside, CA 92521
*
Get access

Abstract

Three-dimensionally ordered macro-/mesoporous (3DOM/m) TiO2 monoliths were fabricated by a dual-templating synthesis approach employing a combination of both colloidal crystal templating (hard-templating) and surfactant templating (soft-templating) techniques. Titania precursor, consisting of amphiphilic triblock copolymer Pluronic P123 as a mesopore-structure-directing agent and titanium tetraisopropoxide as a titanium source, was infiltrated into the void spaces of the poly(methyl methacrylate) (PMMA) colloidal crystal monolith. Subsequent thermal treatment produced 3DOM/m TiO2 monolith. The macropore walls of the prepared 3DOM/m TiO2 exhibit a well-defined mesoporous structure with narrow pore size distribution, and the mesopore walls are composed of nanocrystalline anatase TiO2. The material also shows a high surface area (171 m2/g), and large pore volume (0.402 cm3/g).

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chen, X. B. and Mao, S. S., Chem. Rev. 107, 2891 (2007).Google Scholar
2. Aprile, C., Corma, A., and Garcia, H., Phys. Chem. Chem. Phys. 10, 769 (2008).Google Scholar
3. Yang, P. D., Zhao, D. Y., Margolese, D. I., Chmelka, B. F., and Stucky, G. D., Nature 396, 152 (1998).Google Scholar
4. Alberius, P. C. A., Frindell, K. L., Hayward, R. C., Kramer, E. J., Stucky, G. D., and Chmelka, B. F., Chem. Mater. 14, 3284 (2002).Google Scholar
5. Crepaldi, E. L., Soler-Illia, G. J. A. A., Grosso, D., Cagnol, F., Ribot, F., and Sanchez, C., J. Am. Chem. Soc. 125, 9770 (2003).Google Scholar
6. Yang, X. Y., Li, Y., Lemaire, A., Yu, J. G., and Su, B. L., Pure Appl. Chem. 81, 2265 (2009).Google Scholar
7. Yu, J. G., Zhang, L. J., Cheng, B., and Su, Y. R., J. Phys. Chem. C 111, 10582 (2007).Google Scholar
8. Fu, Y. N., Jin, Z. G., Xue, W. J., and Ge, Z. P., J. Am. Ceram. Soc. 91, 2676 (2008).Google Scholar
9. Zhao, J. Q., Wan, P., Xiang, J., Tong, T., Dong, L., Gao, Z. N., Shen, X. Y., and Tong, H., Micropor. Mesopor. Mater. 138, 200 (2011).Google Scholar
10. Chen, J. I. L., von Freymann, G., Choi, S. Y., Kitaev, V., and Ozin, G. A., Adv. Mater. 18, 1915 (2006).Google Scholar
11. Halaoui, L. I., Abrams, N. M., and Mallouk, T. E., J. Phys. Chem. B 109, 6334 (2005).Google Scholar
12. Wang, X. C., Yu, J. C., Ho, C. M., Hou, Y. D., and Fu, X. Z., Langmuir 21, 2552 (2005).Google Scholar
13. Konishi, J., Fujita, K., Nakanishi, K., Hirao, K., Morisato, K., Miyazaki, S., and Ohira, M., J. Chromatogr. A 1216, 7375 (2009).Google Scholar
14. Schroden, R. C., Al-Daous, M., Blanford, C. F., and Stein, A., Chem. Mater. 14, 3305 (2002).Google Scholar
15. Wang, K. X., Yao, B. D., Morris, M. A., and Holmes, J. D., Chem. Mater. 17, 4825 (2005).Google Scholar
16. Brinker, C. J., Lu, Y. F., Sellinger, A., and Fan, H. Y., Adv. Mater. 11, 579 (1999).Google Scholar
17. Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., and Siemieniewska, T., Pure Appl. Chem. 57, 603 (1985).Google Scholar
18. Wang, Z. Y. and Stein, A., Chem. Mater. 20, 1029 (2008).Google Scholar
19. Deng, Y. H., Liu, C., Yu, T., Liu, F., Zhang, F. Q., Wan, Y., Zhang, L. J., Wang, C. C., Tu, B., Webley, P. A., Wang, H. T., and Zhao, D. Y., Chem. Mater. 19, 3271 (2007).Google Scholar