Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T02:33:25.360Z Has data issue: false hasContentIssue false

Fabrication of Semiconductor Nanostructures With an Atomic Force Microscope

Published online by Cambridge University Press:  15 February 2011

E. S. Snow
Affiliation:
Naval Research Laboratory, Washington, DC 20375
P. M. Campbell
Affiliation:
Naval Research Laboratory, Washington, DC 20375
Get access

Abstract

An AFM-based nanolithography process is described. We employ the local electric field of a metal-coated AFM tip which is operated in air to selectively oxidize regions of a H-passivated Si surface. The resulting oxide, ∼ 3 nm thick, is used as a mask for selective etching of the unoxidized regions of Si. This AFM-based fabrication process is fast, reliable, simple to perform and is well suited for device fabrication. We apply this technique to the fabrication of Si and GaAs nanostructures, as well as to the fabrication of a nanometer-scale Si side-gated transistor. In addition, we discuss the ultimate resolution limits of the technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eigler, D. M. and Schweizer, E. K., Nature 344, 524 (1990).Google Scholar
2. McCord, M. A. and Pease, R. F. W., J. Vac. Sci. Technol. B 6, 293 (1988).Google Scholar
3. DeLozanne, A. L., Ehrichs, E. E. and Smith, W. F., J. Phys.: Condens. Matter 5, A409 (1993).Google Scholar
4. Stockman, L., et al., Appl. Phys. Lett. 62, 2935 (1993).Google Scholar
5. Dagata, J. A., et al., Appl. Phys. Lett. 56, 2001 (1990).Google Scholar
6. Snow, E. S. and Campbell, P.M., Appl. Phys. Lett. 64, 1932 (1994).Google Scholar
7. Snow, E. S., Campbell, P. M. and McMarr, P. J., Appl. Phys. Lett. 63, 749 (1993).Google Scholar
8. Snow, E. S., Campbell, P. M and Shanabrook, B. V., Appl. Phys. Lett. 63, 3488 (1993).Google Scholar
9. Minne, S. C., et al., J. Vac. Sci. B (in press).Google Scholar
10. Campbell, P. M., Snow, E. S. and McMarr, P. J., Appl. Phys. Lett. 66, 1388 (1995).Google Scholar
11. Minne, S. C., et al., Appl. Phys. Lett. 66, 703 (1995).Google Scholar
12. Dagata, J. A., et al., J. Vac. Sci. B 9, 1384 (1991).Google Scholar
13. Barniol, N., Perez-Murano, F. and Aymerich, X., Appl. Phys. Lett. 61, 462 (1992).Google Scholar
14. Sugimura, H., Kitamura, N. and Masuhara, H., Jpn. J. Appl. Phys. 33, L143 (1994).Google Scholar
15. Liming Tsau, Dawen Wang and Wang, K. L., Appl. Phys. Lett. 64, 2133 (1994).Google Scholar
16. Dawen Wang, Liming Tsau and Wang, K. L., Appl. Phys. Lett. 65, 1415 (1994).Google Scholar
17. Lyding, J. W., et al., Appl. Phys. Lett. 64, 2010 (1994).Google Scholar
18. Shen, T. -C., et al., Appl. Phys. Lett. 66, 976 (1995).Google Scholar
19. Sugimura, H., et al., Appl. Phys. Lett. 63, 1288 (1993).Google Scholar
20. Campbell, P. M., Snow, E. S. and McMarr, P. J., Solid-State Electronics 37, 583 (1994).Google Scholar
21. Snow, E. S., Campbell, P. M. and McMarr, P. J., Nanotechnology (in press).Google Scholar
22. McMarr, P. J., et al., J. of Appl. Phys. 67, 7211 (1990).Google Scholar
23. Tiwari, S., Wright, S. L. and Batey, J., IEEE Electron Devices Lett. 9, 488 (1988).Google Scholar
24. Fountain, G. G., et al., Electon. Lett. 24, 1134 (1988).Google Scholar
25. Palik, E. D., Glembocki, O. J. and Stahlbush, R. E., J. Electrochem. Soc. 135, 3126 (1988).Google Scholar
26. Kramer, N., et al., Appl. Phys. Lett. 66, 1325 (1995).Google Scholar
27. Ogawa, K., et al., Appl. Phys. Lett. 66, 1228 (1995).Google Scholar
28. Snow, E. S., etal., Appl. Phys. Lett. 66, 1729 (1995).Google Scholar