No CrossRef data available.
Article contents
Fabrication of polycrystalline thin films of liquid crystalline materials by solution process and its application to OFETs
Published online by Cambridge University Press: 01 February 2011
Abstract
We have fabricated polycrystalline OFETs of two different liquid crystalline materials i.e., ω,ω'-dihexylquaterthipohene (6-QTP-6) and N, N'-ditridecylperylenediimide (13-Per-13) by solution process. Liquid crystalline materials help fabricating uniform thin films on the substrate when spin-coated at their temperature range of liquid crystalline phase. The FETs fabricated with 6-QTP-6 exhibited p-channel performance and its mobility was determined to be 0.04 cm2/Vs, which was comparable to that determined by time-of-flight experiments. The FETs fabricated with 13-Per-13 exhibited n-channel performance and its FET mobility was 0.008 cm2/Vs, while the mobility was increased up to 0.11 cm2/Vs after thermal annealing of the film at a liquid crystalline temperature of 220°C for an hour. Judging from these facts, the grain boundaries are controlled not so as to across the conduction channels formed by self-aligned π-conjugated aromatic cores in liquid crystalline molecules. We conclude that liquid crystalline material is a good candidate for quality polycrystalline thin films for OFETs.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2008