Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:16:10.762Z Has data issue: false hasContentIssue false

The fabrication of p-Ge/n-Si photodetectors, compatible with back-end Si CMOS processing, by low temperature (< 400 °C) molecular beam epitaxy and electron-beam evaporation

Published online by Cambridge University Press:  01 February 2011

Prabhakar Bandaru
Affiliation:
Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, CA 90095
Subal Sahni
Affiliation:
Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, CA 90095
Eli Yablonovitch
Affiliation:
Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, CA 90095
Hyung-Jun Kim
Affiliation:
Department of Materials Science and Engineering, University of California at Los Angeles, Los Angeles, CA 90095
Ya-Hong Xie
Affiliation:
Department of Materials Science and Engineering, University of California at Los Angeles, Los Angeles, CA 90095
Get access

Abstract

We report on the low temperature growth, by molecular beam epitaxy (375 °C) and electron-beam evaporation (300 °C), of p-Ge films on n-Si substrates for fabricating p-n junction photodetectors, aimed at the integration of opto-electronic components with back-end Si CMOS processing. Various surface hydrogen and hydrocarbon removal treatments were attempted to improve device properties. We invoke Ge diffusion and growth modes as a function of deposition temperature and rate to correlate structural analysis with the device performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fitzgerald, E. A. & Kimmerling, L. C., MRS Bulletin 23, 39 (1998).Google Scholar
2. Watson, G. P., Fitzgerald, E. A., Xie, Y. H. & Monroe, D., J. Appl. Phys., 75, 263 (1994).Google Scholar
3. Thompson, P. E., Twigg, M. E., Godbey, D. J., Hobart, K. D. & Simons, D. S., J. Vac. Sci. & Tech. B 11, 1077 (1993).Google Scholar
4. Eaglesham, D. J., Higashi, G. S. & Cerullo, M., Appl. Phys. Lett. 59, 685 (1991).Google Scholar
5. Trucks, G. W., Raghavachari, K., Higashi, G. S. & Chabal, Y. J., Phys. Rev. Lett. 65, 504 (1990).Google Scholar
6. Grunthaner, F. J. & Grunthaner, P. J. Mat. Sci. Reports, 1, 65 (1986).Google Scholar
7. Eaglesham, D. J. & Cerullo, M. Phys. Rev. Lett., 64, 1943 (1990).Google Scholar
8. Bandaru, P. R., Sahni, S., Yablonovitch, E., Kim, H.-J. & Xie, Y.-H., J. Appl. Phys. (submitted).Google Scholar
9. Holmes, P. J. in The Electrochemistry of Semiconductors (ed. Holmes, P. J.), Academic Press, New York, (1962).Google Scholar
10. Grove, A. S. Physics & Tech. of Semiconductor Devices, John Wiley, New York, (1967).Google Scholar
11. Masini, G., Colace, L. & Assanto, G., “Germanium Thin Films on Silicon for detection of near-infrared light” (ed. Nalwa, H. S.), Academic Press, New York, (2002).Google Scholar
12. Jeong, S. & Oshiyama, A., Phys. Rev. Lett., 79, 4425 (1997).Google Scholar
13. Fitzgerald, E. A., Mat. Sci. Reports 7, 87 (1991).Google Scholar
14. LeGoues, F. K., Copel, M. & Tromp, R. M., Phys. Rev. B, 42, 11690 (1990).Google Scholar
15. Frotzheim, H., Kohler, U. & Lammerling, H., Surf. Sci., 149, 537 (1985).Google Scholar
16. Thanh, V. L., Bouchier, D. & Hncelin, G., J. Appl. Phys., 87, 3700 (2000).Google Scholar