No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Periodic arrays of nano-sized Si and Ni dots were fabricated by only irradiating a linearly polarized Nd:YAG pulsed laser beam to Si and Ni thin films deposited on silicon dioxide (SiO2) film. The interference between an incident beam and a scattered surface wave leads to the spatial periodicity of beam energy density distribution on the surface of the irradiated samples. A thin film was melted using a laser beam, and the molten film was split and condensed owing to its surface tensile according to the periodic energy density distribution. Then, the fine lines (line and space structure) were formed periodically. After the formation of fine lines, the sample was rotated by 90°, and the laser beam was irradiated. The periodic energy density distribution was generated on the fine lines, and the lines split and condensed according to the periodic energy density distribution. Eventually, the periodically aligned nano-sized dots were fabricated on the SiO2 film.