Article contents
Fabrication of Periodic Arrays of Nanoscale Square Helices
Published online by Cambridge University Press: 01 February 2011
Abstract
We demonstrate fabrication of periodic arrays of nanometre scale square helices, with potential applications in three-dimensional photonic bandgap (PBG) materials. Processing is performed using a thin film deposition method known as Glancing Angle Deposition (GLAD). Through advanced substrate motion, this technique allows for controlled growth of square helices in a variety of inorganic materials. Organization of the helices into periodic twodimensional geometries is achieved by prepatterning the substrate surface using electron beam lithography. The regular turns of the helices yield periodicity in the third dimension, perpendicular to the substrate. We present studies of tetragonal and trigonal arrays of silicon helices, with lattice constants as low as 300 nm. By deliberately adding or leaving out seeds in the substrate pattern, we have succeeded in engineering line defects. Our periodic nanoscale structure closely matches an ideal photonic band gap architecture, as recently proposed by Toader and John. While our fabrication technique is simpler than most suggested PBG schemes, it is highly versatile. A wide range of materials can be used for GLAD, manipulation of lattice constant and helix pitch ensures optical tunability, and the GLAD films are robust to micromachining.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2002
References
- 1
- Cited by