Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:45:50.707Z Has data issue: false hasContentIssue false

Fabrication of Organic Small Molecular Thin Films based on Ultrasonic Spray-Assisted Vapor-Deposition Method

Published online by Cambridge University Press:  10 January 2012

Jinchun Piao
Affiliation:
Department of Electronic Science and Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan Photonics and Electronics Science and Engineering Center, Kyoto University, Katsura, Kyoto 615-8520, Japan
Shigetaka Katori
Affiliation:
Department of Electronic Science and Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
Takumi Ikenoue
Affiliation:
Department of Electronic Science and Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan Photonics and Electronics Science and Engineering Center, Kyoto University, Katsura, Kyoto 615-8520, Japan
Shizuo Fujita
Affiliation:
Photonics and Electronics Science and Engineering Center, Kyoto University, Katsura, Kyoto 615-8520, Japan
Get access

Abstract

Small molecular thin films using solution-based method is a challengeable subject in organic optical and electronic devices. In our previous research, we successfully deposited aluminum tris(8-hydroxyquinoline) (Alq3) films on glass substrate. In this paper, aiming at future exploration of electroluminescent devices, we deposited N, N ’-Bis(3-methylphenyl)-N,N’- diphenylbenzidine) (TPD) films on indium-tin-oxide (ITO) substrates using the vapor-deposition method. Photoluminescence characteristics evidenced the actual formation of TPD thin films. Together with the good surface morphology and low leakage current of the films, the results are promising for actual device fabrication at low cost and low material loss.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jonda, C. H., Mayer, A. B. R., Stolz, U., Elschner, A., and Karbach, A.: J. Mater. Sci. 35 (2000) 5645.Google Scholar
2. Bae, C., Lee, S., Choi, S.-Y., and Kwag, G.: Inorg. Chem. 44 (2005) 7911.Google Scholar
3. Xu, G., Tang, Y.-B., Tsang, C-H., Zapien, J.-A., Lee, C.-S., and Wong, N.-B.: J. Mater. Chem. 20 (2010) 3006.Google Scholar
4. Tu, C.-H., Lai, Y.-S., and Kwong, D.-L.: IEEE Electron Device Lett. 27 (2006) 354.Google Scholar
5. Okabayashi, Y., Mitarai, T., Yamazaki, S., and Matsuyama, R.: Appl. Surf. Sci. 244 (2005) 217.Google Scholar
6. Uchida, M., Ohmori, Y., Noguchi, T., and Ohnishi, T.: Jpn. J. Appl. Phys. 32 (1993) L921.Google Scholar
7. Takayama, T., Kitamura, M., Kobayashi, Y., Arakawa, Y., and Kudo, K.: Macromol. Rapid Commun. 25 (2004) 1171.Google Scholar
8. Lu, J., Hlil, A. R., Meng, Y., Hay, A. S., Tao, Y., D’Iorio, M., Maindron, T., Dodelet, J.-P.: J. Polymer Sci. Part A: 38 (2000) 2887.Google Scholar
9. Mei, Q., Tong, B., Liang, L.. and Lua, M.: J. Photochem. and Photobiology A: Chem. 191 (2007) 216221.Google Scholar
10. Piao, J., Katori, S., Ikenoue, T. and Fujita, S.: Jpn. J. Appl. Phys. 50 (2011) 020204 Google Scholar
11. Shim, H.K. and Jin, J.I.: Adv. Polym.Sci. 158 (2002) 193 Google Scholar
12. Mu, H., Shen, H. and David, K.: Solid State Electronics 48 (2004) 2085 Google Scholar
13. Nayak, P.K., Patankar, M.P., Narasimhan, K.L. and Periasamy, N.: J. Luminescence 130 (2010) 1174 Google Scholar
14. Okamura, S. and Shiosaki, T.: Jpn. J. Appl. Phys. 43 (2004) 6562 Google Scholar
15. Kamada, Y., Kawaharamura, T., Nishinaka, H. and Fujita, S.: Jpn. J. Appl. Phys. 45 (2006) L857 Google Scholar
16. Nishinaka, H., Kawaharamura, T. and Fujita, S.: Jpn. J. Appl. Phys. 46 (2007) 6811 Google Scholar
17. Shinohara, D. and Fujita, S.: Jpn.J. Appl. Phys. 47 (2008) 7311 Google Scholar
18. Kawaharamura, T., Nishinaka, H. and Fujita, S.: Zairyo 57 (2008) 481 [in Japanese] Google Scholar
19. Kaneko, K., Nomura, T., Kakeya, I and Fujita, S.: Appl. Phys. Express 2 (2009) 075501 Google Scholar
20. Nishinaka, H., Kamada, Y., Kameyama, N. and Fujita, S.: Jpn. J. Appl. Phys. 48 (2009) 121103 Google Scholar
21. Ziemelis, KE., Hussain, AT., Bradley, DDC., Friend, RH., Ruhe, J. and Wegner, G.: Phys.Rev.Lett. 66 (1991) 2231 Google Scholar
22. Horowitz, G. and Hajlaoui, M.E.: Synth.Mrt. 122 (2001) 185 Google Scholar
23. Salleo, A., Chabinyc, ML., Yang, MS. and Street, RA.: Appl.Phys., Lett., 81 (2002) 4383 Google Scholar
24. Heringdorf, FJMZ., Reuter, MC. and Tromp, RM.: Nature, 412 (2001) 517 Google Scholar
25. Hoshino, S., Kamata, T. and Yase, K.: J.Appl.Phys. 92 (2002) 6028 Google Scholar
26. Yasuda, T., Fujita, K. and Tsutsui, T.: Jpn.J.Appl.Phys. 43 (2004) 7731 Google Scholar