Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:34:48.211Z Has data issue: false hasContentIssue false

Fabrication of Novel III-N and III-V Modulator Structures by ECR Plasma Etching

Published online by Cambridge University Press:  15 February 2011

S. J. Pearton
Affiliation:
University of Florida, Gainesville FL 32611
C. R. Abernathy
Affiliation:
University of Florida, Gainesville FL 32611
J. D. MacKenzie
Affiliation:
University of Florida, Gainesville FL 32611
J. R. Mileham
Affiliation:
University of Florida, Gainesville FL 32611
R. J Shul
Affiliation:
Sandia National Laboratories, Albuquerque NM 87185
S. P. Kilcoyne
Affiliation:
Sandia National Laboratories, Albuquerque NM 87185
M. Hagerott-Crawford
Affiliation:
Sandia National Laboratories, Albuquerque NM 87185
F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill NJ 07974
W. S. Hobson
Affiliation:
AT&T Bell Laboratories, Murray Hill NJ 07974
J. M. Zavada
Affiliation:
US Army Research Laboratories, RTP, NC 27709
Get access

Abstract

Quantum well microdisk laser structures have been fabricated in the GaN/InGaN, GaAs/AlGaAs and GaAs/InGaP systems using a combination of ECR dry etching (Cl2/CH4/H2/Ar, BC13/Ar or CH4/H2/Ar plasma chemistries respectively) and subsequent wet chemical etching of a buffer layer underlying the quantum wells. While wet etchants such as HF/H2O and HCI/HNO3/H2O are employed for AlGaAs and InGaP, respectively, a new KOH-based solution has been developed for AlN which is completely selective over both GaN and InGaN. Typical mask materials include PR or SiNx, while the high surface recombination velocity of exposed AlGaAs (∼105cm·sec-1) requires encapsulation with ECR-CVD SiNx to stabilize the optical properties of the modulators.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. McCall, S. E., Levi, A. F. J., Slusher, R. E., Pearton, S. J. and Logan, R. A., Appl. Phys. Lett. 60 289 (1992).Google Scholar
2. Levi, A. F. J., Slusher, S. L., Glass, J. L., Pearton, S. J. and Logan, R. A., Appl. Phys. Lett. 62 561 (1993).Google Scholar
3. Chu, D. Y., Chin, M. K., Bi, W. G., Hou, H. Q., Tu, C. W. and Ho, S. T., Appl Phys. Lett. 65 3167 (1994).Google Scholar
4. Mohideen, U., Hobson, W. S., Pearton, S. J., Ren, F., and Slusher, R. E., Appl. Phys. Lett. 65 1911 (1994).Google Scholar
5. Hovinen, M., Ding, J., Nurmikko, A. V., Grillo, D. C., Han, J., He, L. and Gunshor, R. L., Appl. Phys. Lett. 62 3128 (1993).Google Scholar
6. Nakamura, S., Mukai, T. and Senoh, M. Appl. Phys. Lett. 64 1687 (1994).Google Scholar
7. Tan, S. S., Ye, M. and Milnes, A. G., Solid State Electron. 38 17 (1995)Google Scholar
8. Ghandi, S. K., VLSI Fabrication Principles (Wiley, New York, 1994).Google Scholar
9. Moreau, W. M., Semiconductor Lithography: Principles, Practices and Materials (Plenum, New York, 1988).Google Scholar
10. Jewell, J. L., McCall, S. L., Lee, Y. H., Scherer, A., Gossard, A. C. and English, J. H., Appl. Phys. Lett. 54 1400 (1989).Google Scholar
11. Lin, H. H. and Lee, S. C., Appl. Phys. Lett. 48 839 (1985).Google Scholar