Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T16:04:36.368Z Has data issue: false hasContentIssue false

Fabrication of Multilayer Films Using a Spinning Process

Published online by Cambridge University Press:  17 March 2011

Jinhan Cho
Affiliation:
School of Chemical Engineering, Seoul National University, San 56-1, Shinlim-dong, Kwanak-gu, Seoul 151-742, Korea
Kookheon Char
Affiliation:
School of Chemical Engineering, Seoul National University, San 56-1, Shinlim-dong, Kwanak-gu, Seoul 151-742, Korea
Jong-Dal Hong
Affiliation:
Department of Chemistry, University of Inchon, Dowha-dong, Namgu, Inchon 402-749, Korea
Ki-Bong Lee
Affiliation:
Department of Physics, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang 790-784, Kyoungbuk, Korea
Get access

Abstract

We introduce a method to build up organic/organic and organic/inorganic multilayer films composed of cationic poly(allylamine hydrochloride) (PAH) and negatively charged poly(sodium 4-styrenesulfonate) (PSS) or inorganic cadmium sulfide (CdS) nanoparticles using a spinning process. Since the deposition of each layer is made at a high spinning speed, the adsorption time for the formation of a homogeneous thin layer takes only 8 to 15 seconds. The adsorbed film thickness per bilayer can be easily controlled from about 5Å to 40Å by varying the spinning speed (Ω) and the mole concentration of polyelectrolytes. We also demonstrated with X-ray reflectivity that the alternating organic/inorganic ultrathin films fabricated by the spin SA process retain highly ordered internal structure in comparison with those prepared by the conventional SA process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ho, P. K. H., Kim, J.-S., Burroughes, J. H., Becker, H., Li, S. F. Y., Brown, T. M., Cacialli, F., Friend, R. H.. Nature 404, 481 (2000).Google Scholar
2. Zhang, X., Shen, J., Adv. Mater. 11, 1139 (1999).Google Scholar
3. Decher, G., Hong, J.-D., Schmitt, J., Thin Solid Films 210, 831 (1992).Google Scholar
4. Bornside, D. E., J. Electrochem. Soc. 137, 2589 (1990).Google Scholar
5. Lawrence, C. J., Phys. Fluids 31, 2786 (1988).Google Scholar
6. Ohara, T., Matsumoto, Y., Ohasi, H., Phys. Fluids A 1, 1949 (1989).Google Scholar
7. Flack, W. W., Soong, D. S., Bell, A. T., Hess, D. W., J. Appl. Phys. 56, 1199 (1984).Google Scholar
8. Schmitt, J., Decher, G., Dressick, W. J., Brandow, S. L., Geer, R. E., Shashidhar, R., Calvert, J. M., Adv. Mater. 9, 61 (1997).Google Scholar
9. Hong, H., Steitz, R., Kirstein, S., Davidov, D., Adv. Mater. 10, 1104 (1998).Google Scholar
10. Gao, M., Richter, B., Kirstein, S., Mohwald, H., J. Phys. Chem. B 102, 4096 (1998).Google Scholar
11. Gao, M., Zhang, X., Yang, B., Li, F., Shen, J. C., Thin Solid Films 242, 284 (1996).Google Scholar