Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T17:42:37.172Z Has data issue: false hasContentIssue false

Fabrication of MEMS Components Based on Ultrananocrystalline Diamond Thin Films and Characterization of Mechanical Properties

Published online by Cambridge University Press:  17 March 2011

A. V. Sumant
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL.
O. Auciello
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL.
A. R. Krauss
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL.
D. M. Gruen
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL.
D. Ersoy
Affiliation:
University of Illinois-Chicago, IL.
J. Tucek
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL.
A. Jayatissa
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL.
E. Stach
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley Laboratory, Berkeley, CA.
N. Moldovan
Affiliation:
Experimental Facility Division, Argonne National Laboratory, Argonne, IL.
D. Mancini
Affiliation:
Experimental Facility Division, Argonne National Laboratory, Argonne, IL.
H. G. Busmann
Affiliation:
Fraunhofer Institute for Applied Materials Science, Bremen, Germany
E. M. Meyer
Affiliation:
Institute for Microsensors, Actuators, and Systems, University of Bremen, Germany
Get access

Abstract

The mechanical, thermal, chemical, and tribological properties of diamond make it an ideal material for the fabrication of MEMS components. However, conventional CVD diamond deposition methods result in either a coarse-grained pure diamond structure that prevents high- resolution patterning, or in a fine-grained diamond film with a significant amount of intergranular non-diamond carbon. At Argonne National Laboratory, we are able to produce phase-pure ultrananocrystalline diamond (UNCD) films for the fabrication of MEMS components. UNCD is grown by microwave plasma CVD using C60-Ar or CH4-Ar plasmas, resulting in films that have 3-5 nm grain size, are 10-20 times smoother than conventionally grown diamond films, and can have mechanical properties similar to that of single crystal diamond. We used lithographic patterning, lift-off, and etching, in conjunction with the capability for growing UNCD on SiO2 to fabricate 2-D and 3-D UNCD-MEMS structures. We have performed initial characterization of mechanical properties by using nanoindentation and in-situ TEM indentor techniques. The values of Hardness (∼88 GPa) and Young's modulus (∼ 864 GPa) measured are very close to those of single crystal diamond (100 GPa and 1000 GPa respectively). The results show that UNCD is a promising material for future high performance MEMS devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tong, L., Mehregany, M. and Matus, L. G., Appl. Phys. Lett., 60, 2992 (1992).Google Scholar
2. Neuberger, M., Mat. Res. Bull., 4, 365 (1969).Google Scholar
3. Spearing, S. M. and Chen, K. S. in “Tribology Issues and Opportunities in MEMS”, edited by Bushan, , Kluwer Academic Publishers, The Netherlands, 95 (1998).Google Scholar
4. Friedmann, T. A. and Sullivan, J. P., Knapp, J. A., Tallant, D. R., Follstaedt, D. M., Medlin, D. L., Mirkarimi, P. B. Appl. Phys. Lett., 71, 3820 (1997).Google Scholar
5. Davidson, J. L., Ramesham, R. and Ellis, C., J. Electrochem. Soc., 137, 3206 (1990).Google Scholar
6. Aslam, M., Yang, G.S., and Masood, A., Sensors and Actuators., A45, 131 (1994).Google Scholar
7. Wur, D.R., Davidson, J.L., Kang, W.P., and Kinser, D.L., J. Micromech. Syst., 4, 34 (1995).Google Scholar
8. Dorsch, O., Holzner, K., Werner, M., Obermeir, E., Harper, R.E., Johnston, C., Chalker, P.R., Buckley-Golder, I. M., Diamond Relat. Mater., 2, 1096 (1993).Google Scholar
9. Zaho, G., Charlson, E.M., Charlson, E.J., Stacey, T., Meese, J., Popovici, G., and Prelas, M. G. J. Appl. Phys., 73, 1832 (1993).Google Scholar
10. Haris, S. J. and Goodwin, D. G., J. Phys. Chem., 97, 23 (1993).Google Scholar
11. Gruen, D. M., Annu. Rev. Mater. Sci., 29, 211 (1999).Google Scholar
12. Auciello, O., Krauss, A. R., Gruen, D. M., Busman, H. G., Meyer, E. M., Tucek, J., Sumant, A., Jayatissa, A., Moldovan, N., Mancini, D. C., and Gardos, M. N., in “Materials Science of Microelectromechanical Systems” (MEMS) Devices II, edited by Boer, M. P. de, Heuer, A. H., Jacobs, S. J., and Peeters, E. (Mater. Res. Soc. Symp. Proc., 605, Warrendale, PA, 2000) p. 73.Google Scholar
13. Auciello, O., Krauss, A. R., Gruen, D. M., Jayatissa, A., Sumant, A., Tucek, J., Mancini, D. C., Moldovan, N., Erdemir, A., Ersoy, D., Gardos, M. N., Busman, H. G., Meyer, E. M., in “Smart Materials and MEMS”(Proc. of SPIE International Conference, Australia, Dec. 2000) (Submitted).Google Scholar
14. Erdemir, A., Fenske, G. R., Krauss, A. R., Gruen, D. M., McCauley, T., Csencsits, R. T., Surface and Coatings Technology., 120–121, 565 (1999).Google Scholar
15. Nuth, J. A., Nature., 329, 589 (1987).Google Scholar