Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T04:56:01.399Z Has data issue: false hasContentIssue false

Fabrication of Hollow Anatase Structure by Using Sea Wool Sponges

Published online by Cambridge University Press:  01 February 2011

Fung-luen Kwong
Affiliation:
[email protected], The Chinese University of Hong Kong, Department of Physics, Shatin, N. T., Hong Kong
Dickon H. L. Ng
Affiliation:
[email protected], The Chinese University of Hong Kong, Department of Physics, Shatin, N. T., Hong Kong
Get access

Abstract

Highly porous carbon-doped anatase was produced by a simple and time-saving method. The product was prepared by using sea wool sponges and a titanium-contained organic solution. The intermediate product was pyrolyzed sponges coated with amorphous anatase. When further annealed, the final product was an entirely carbon – anatase product with the original structure of sea wool sponges. The struts in the carbon – anatase product were hollow with wall thickness less than 300 nm. Cathodoluminescence measurement showed that this C-TiO2 product was sensitive to visible light.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lin, Y. S., Chen, M. T., Lin, Y. F., Yang, S. J. and Lin, J. L., Appl. Surf. Sci. 252 (16), 5892 (2006).Google Scholar
2. Wu, W. C., Liao, L. F., Chuang, C. C. and Lin, J. L., J. Catal. 195 (2), 416 (2000).Google Scholar
3. Naman, S. A., Khammas, Z. A.-A. and Hussein, F. M., J. Photochem. Photobio. A 153 (1-3), 229 (2002).Google Scholar
4. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y., Science 293 (5528), 269 (2001).Google Scholar
5. Choi, Y., Umebayashi, T. and Yoshikawa, M., J. Mater. Sci. 39 (5), 1837 (2004).Google Scholar
6. Lettmann, C., Hildenbrand, K., Kisch, H., Macyk, W. and Maier, W. F., Appl. Catal. B 32 (4), 215 (2001).Google Scholar
7. Kim, J. H., Fujita, S. and Shiratori, S., Thin Solid Films 499 (1-2), 83 (2006).Google Scholar
8. Shannon, R. D. and Pask, J. A., J. Am. Ceram. Soc. 48 (8), 391 (1965).Google Scholar
9. Shen, M., Wu, Z. Y., Huang, H., Du, Y. K., Zou, Z. G. and Yang, P., Mater. Lett. 60 (5), 693 (2006).Google Scholar
10. Park, J., Lee, J. Y. and Cho, J. H., J. Appl. Phy. 100, 113534 (2006).Google Scholar
11. Nakano, Y., Morikawa, T., Ohwaki, T. and Taga, Y., Appl. Phy. Lett. 86, 132104 (2005).Google Scholar
12. Remington, J. P., Woods, H. C. and others, The Dispensatory of the United States of America, 20th Ed. (The Southwest School of Botanical Medicine, Arizona, 1918) pp. S107–S108.Google Scholar
13. Billmeyer, F. W., Textbook of Polymer Science, 3rd Ed. (John Wiley & Sons, New York, 1984) pp. 13.Google Scholar
14. Ryu, H. K., Cho, S. I., Heo, J. S., Cho, Y. S. and Moon, S. H., “Thermal Decomposition Mechanism of Ba(DPM)2”, Res. Chem. Intermed. 26 (5), 499 (2000).Google Scholar
15. Lee, W. G., Woo, S. I., Kim, J. C., Choi, S. H. and Oh, K. H., Thin Solid Films 237 (1-2), 105 (1994).Google Scholar